UARS {rotations} | R Documentation |
Generic UARS Distribution
Description
Density, distribution function and random generation for the the generic uniform axis-random spin (UARS) class of distributions.
Usage
duars(R, dangle, S = id.SO3, kappa = 1, ...)
puars(R, pangle = NULL, S = id.SO3, kappa = 1, ...)
ruars(n, rangle, S = NULL, kappa = 1, space = "SO3", ...)
Arguments
R |
Value at which to evaluate the UARS density. |
dangle |
The function to evaluate the angles from, e.g. dcayley, dvmises, dfisher, dhaar. |
S |
central orientation of the distribution. |
kappa |
concentration parameter. |
... |
additional arguments. |
pangle |
The form of the angular density, e.g. pcayley, pvmises, pfisher, phaar. |
n |
number of observations. If |
rangle |
The function from which to simulate angles, e.g. rcayley, rvmises, rhaar, rfisher. |
space |
indicates the desired representation: matrix ("SO3") or quaternion ("Q4"). |
Details
For the rotation R with central orientation S and concentration \kappa
the UARS density is given by
f(R|S,\kappa)=\frac{4\pi}{3-tr(S^\top R)}C(\cos^{-1}[tr(S^\top R)-1]/2|\kappa)
where C(r|\kappa)
is one of the Angular-distributions.
bingham09
Value
duars |
gives the density |
puars |
gives the distribution function. If pangle is left empty, the empirical CDF is returned. |
ruars |
generates random deviates |
See Also
For more on the angular distribution options see Angular-distributions.
Examples
#Generate random rotations from the Cayley-UARS distribution with central orientation
#rotated about the y-axis through pi/2 radians
S <- as.SO3(c(0, 1, 0), pi/2)
Rs <- ruars(20, rangle = rcayley, kappa = 1, S = S)
rs <- mis.angle(Rs-S) #Find the associated misorientation angles
frs <- duars(Rs, dcayley, kappa = 10, S = S) #Compute UARS density evaluated at each rotations
plot(rs, frs)
cdf <- puars(Rs, pcayley, S = S) #By supplying 'pcayley', it is used to compute the
plot(rs, cdf) #the CDF
ecdf <- puars(Rs, S = S) #No 'puars' arguement is supplied so the empirical
plot(rs, ecdf) #cdf is returned