Arithmetic {rotations} | R Documentation |
Arithmetic operators on SO(3)
Description
These binary operators perform arithmetic on rotations in quaternion or rotation matrix form (or objects which can be coerced into them).
Usage
## S3 method for class 'SO3'
x + y
## S3 method for class 'SO3'
x - y = NULL
## S3 method for class 'Q4'
x + y
## S3 method for class 'Q4'
x - y = NULL
Arguments
x |
first argument |
y |
second argument (optional for subtraction) |
Details
The rotation group SO(3) is a multiplicative group so “adding" rotations R_1
and R_2
results in R_1+R_2=R_2R_1
. Similarly, the difference between rotations R_1
and R_2
is
R_1-R_2=R_2^\top R_1
. With this definition it is clear that
R_1+R_2-R_2=R_2^\top R_2R_1=R_1
.
If only one rotation is provided to subtraction then the inverse (transpose) it returned,
e.g. -R_2=R_2^\top
.
Value
+ |
the result of rotating the identity frame through x then y |
- |
the difference of the rotations, or the inverse rotation of only one argument is provided |
Examples
U <- c(1, 0, 0) #Rotate about the x-axis
R1 <- as.SO3(U, pi/8) #Rotate pi/8 radians about the x-axis
R2 <- R1 + R1 #Rotate pi/8 radians about the x-axis twice
mis.axis(R2) #x-axis: (1,0,0)
mis.angle(R2) #pi/8 + pi/8 = pi/4
R3 <- R1 - R1 #Rotate pi/8 radians about x-axis then back again
R3 #Identity matrix
R4 <- -R1 #Rotate in the opposite direction through pi/8
R5 <- as.SO3(U, -pi/8) #Equivalent to R4
M1 <- matrix(R1, 3, 3) #If element-wise addition is requred,
M2 <- matrix(R2, 3, 3) #translate them to matrices then treat as usual
M3 <- M1 + M2
M1 %*% M1 #Equivalent to R2
t(M1) %*% M1 #Equivalent to R3
t(M1) #Equivalent to R4 and R5
#The same can be done with quaternions: the identity rotation is (1, 0, 0, 0)
#and the inverse rotation of Q=(a, b, c, d) is -Q=(a, -b, -c, -d)
Q1 <- as.Q4(R1)
Q2 <- Q1 + Q1
mis.axis(Q2)
mis.angle(Q2)
Q1 - Q1 #id.Q4 = (1, 0, 0, 0)
[Package rotations version 1.6.5 Index]