tang-norm-decomp {rotasym} | R Documentation |
Distributions based on the tangent-normal decomposition
Description
Density and simulation of a distribution on
S^{p-1}:=\{\mathbf{x}\in R^p:||\mathbf{x}||=1\}
, p\ge 2
, obtained by the
tangent-normal decomposition. The tangent-normal decomposition of
the random vector \mathbf{X}\in S^{p-1}
is
V\boldsymbol{\theta} +
\sqrt{1 - V^2}\boldsymbol{\Gamma}_{\boldsymbol{\theta}}\mathbf{U}
where V := \mathbf{X}'\boldsymbol{\theta}
is a
random variable in [-1, 1]
(the cosines of
\mathbf{X}
) and
\mathbf{U} := \boldsymbol{\Gamma}_{\boldsymbol{\theta}}\mathbf{X}/
||\boldsymbol{\Gamma}_{\boldsymbol{\theta}}\mathbf{X}||
is a random vector in
S^{p-2}
(the multivariate signs of \mathbf{X}
)
and \boldsymbol{\Gamma}_{\boldsymbol{\theta}}
is the
p\times(p-1)
matrix computed by Gamma_theta
.
The tangent-normal decomposition can be employed for constructing
distributions for \mathbf{X}
that arise for certain choices of
V
and \mathbf{U}
. If V
and
\mathbf{U}
are independent, then simulation from
\mathbf{X}
is straightforward using the tangent-normal
decomposition. Also, the density of \mathbf{X}
at
\mathbf{x}\in S^{p-1}
,
f_\mathbf{X}(\mathbf{x})
, is readily computed as
f_\mathbf{X}(\mathbf{x})=
\omega_{p-1}c_g g(t)(1-t^2)^{(p-3)/2}f_\mathbf{U}(\mathbf{u})
where t:=\mathbf{x}'\boldsymbol{\theta}
,
\mathbf{u}:=\boldsymbol{\Gamma}_{\boldsymbol{\theta}}\mathbf{x}/
||\boldsymbol{\Gamma}_{\boldsymbol{\theta}}\mathbf{x}||
,
f_\mathbf{U}
is the density of \mathbf{U}
,
and f_V(v) := \omega_{p-1} c_g g(v) (1 - v^2)^{(p-3)/2}
is the density
of V
for an angular function g
with normalizing constant
c_g
. \omega_{p-1}
is the surface area of S^{p-2}
.
Usage
d_tang_norm(x, theta, g_scaled, d_V, d_U, log = FALSE)
r_tang_norm(n, theta, r_U, r_V)
Arguments
x |
locations in |
theta |
a unit norm vector of size |
g_scaled |
the scaled angular density |
d_V |
the density |
d_U |
the density |
log |
flag to indicate if the logarithm of the density (or the normalizing constant) is to be computed. |
n |
sample size, a positive integer. |
r_U |
a function for simulating |
r_V |
a function for simulating |
Details
Either g_scaled
or d_V
can be supplied to d_tang_norm
(the rest of the arguments are compulsory). One possible choice for
g_scaled
is g_vMF
with scaled = TRUE
. Another
possible choice is the angular function g(t) = 1 - t^2
, normalized by
its normalizing constant
c_g = (\Gamma(p/2) p) / (2\pi^{p/2} (p - 1))
(see examples).
This angular function makes V^2
to be distributed as a
\mathrm{Beta}(1/2,(p+1)/2)
.
The normalizing constants and densities are computed through log-scales for numerical accuracy.
Value
Depending on the function:
-
d_tang_norm
: a vector of lengthnx
or1
with the evaluated density atx
. -
r_tang_norm
: a matrix of sizec(n, p)
with the random sample.
Author(s)
Eduardo García-Portugués, Davy Paindaveine, and Thomas Verdebout.
References
García-Portugués, E., Paindaveine, D., Verdebout, T. (2020) On optimal tests for rotational symmetry against new classes of hyperspherical distributions. Journal of the American Statistical Association, 115(532):1873–1887. doi:10.1080/01621459.2019.1665527
See Also
Gamma_theta
, signs
,
tangent-elliptical
, tangent-vMF
,
vMF
.
Examples
## Simulation and density evaluation for p = 2
# Parameters
n <- 1e3
p <- 2
theta <- c(rep(0, p - 1), 1)
mu <- c(rep(0, p - 2), 1)
kappa_V <- 2
kappa_U <- 0.1
# The vMF scaled angular function
g_scaled <- function(t, log) {
g_vMF(t, p = p - 1, kappa = kappa_V, scaled = TRUE, log = log)
}
# Cosine density for the vMF distribution
d_V <- function(v, log) {
log_dens <- g_scaled(v, log = log) + (p - 3)/2 * log(1 - v^2)
switch(log + 1, exp(log_dens), log_dens)
}
# Multivariate signs density based on a vMF
d_U <- function(x, log) d_vMF(x = x, mu = mu, kappa = kappa_U, log = log)
# Simulation functions
r_V <- function(n) r_g_vMF(n = n, p = p, kappa = kappa_V)
r_U <- function(n) r_vMF(n = n, mu = mu, kappa = kappa_U)
# Sample and color according to density
x <- r_tang_norm(n = n, theta = theta, r_V = r_V, r_U = r_U)
r <- runif(n, 0.95, 1.05) # Radius perturbation to improve visualization
col <- viridisLite::viridis(n)
dens <- d_tang_norm(x = x, theta = theta, g_scaled = g_scaled, d_U = d_U)
# dens <- d_tang_norm(x = x, theta = theta, d_V = d_V, d_U = d_U) # The same
plot(r * x, pch = 16, col = col[rank(dens)])
## Simulation and density evaluation for p = 3
# Parameters
p <- 3
n <- 5e3
theta <- c(rep(0, p - 1), 1)
mu <- c(rep(0, p - 2), 1)
kappa_V <- 2
kappa_U <- 2
# Sample and color according to density
x <- r_tang_norm(n = n, theta = theta, r_V = r_V, r_U = r_U)
col <- viridisLite::viridis(n)
dens <- d_tang_norm(x = x, theta = theta, g_scaled = g_scaled, d_U = d_U)
if (requireNamespace("rgl")) {
rgl::plot3d(x, col = col[rank(dens)], size = 5)
}
## A non-vMF angular function: g(t) = 1 - t^2. It is sssociated to the
## Beta(1/2, (p + 1)/2) distribution.
# Scaled angular function
g_scaled <- function(t, log) {
log_c_g <- lgamma(0.5 * p) + log(0.5 * p / (p - 1)) - 0.5 * p * log(pi)
log_g <- log_c_g + log(1 - t^2)
switch(log + 1, exp(log_g), log_g)
}
# Cosine density
d_V <- function(v, log) {
log_dens <- w_p(p = p - 1, log = TRUE) + g_scaled(t = v, log = TRUE) +
(0.5 * (p - 3)) * log(1 - v^2)
switch(log + 1, exp(log_dens), log_dens)
}
# Simulation
r_V <- function(n) {
sample(x = c(-1, 1), size = n, replace = TRUE) *
sqrt(rbeta(n = n, shape1 = 0.5, shape2 = 0.5 * (p + 1)))
}
# Sample and color according to density
r_U <- function(n) r_unif_sphere(n = n, p = p - 1)
x <- r_tang_norm(n = n, theta = theta, r_V = r_V, r_U = r_U)
col <- viridisLite::viridis(n)
dens <- d_tang_norm(x = x, theta = theta, d_V = d_V, d_U = d_unif_sphere)
# dens <- d_tang_norm(x = x, theta = theta, g_scaled = g_scaled,
# d_U = d_unif_sphere) # The same
if (requireNamespace("rgl")) {
rgl::plot3d(x, col = col[rank(dens)], size = 5)
}