summarize {rockchalk} | R Documentation |
Sorts numeric from discrete variables and returns separate summaries for those types of variables.
Description
The work is done by the functions summarizeNumerics
and
summarizeFactors
. Please see the help pages for those
functions for complete details.
Usage
summarize(
dat,
alphaSort = FALSE,
stats = c("mean", "sd", "skewness", "kurtosis", "entropy", "normedEntropy", "nobs",
"nmiss"),
probs = c(0, 0.5, 1),
digits = 3,
...
)
Arguments
dat |
A data frame |
alphaSort |
If TRUE, the columns are re-organized in alphabetical order. If FALSE, they are presented in the original order. |
stats |
A vector of desired summary statistics. Set
|
probs |
For numeric variables, is used with the
|
digits |
Decimal values to display, defaults as 2. |
... |
Optional arguments that are passed to
|
Details
The major purpose here is to generate summary data structure that is more useful in subsequent data analysis. The numeric portion of the summaries are a data frame that can be used in plots or other diagnostics.
The term "factors" was used, but "discrete variables" would have been more accurate. The factor summaries will collect all logical, factor, ordered, and character variables.
Other variable types, such as Dates, will be ignored, with a warning.
Value
Return is a list with two objects 1) output from
summarizeNumerics: a data frame with variable names on rows
and summary stats on columns, 2) output from summarizeFactors:
a list with summary information about each discrete
variable. The display on-screen is governed by a method
print.summarize
.
Author(s)
Paul E. Johnson pauljohn@ku.edu
Examples
library(rockchalk)
set.seed(23452345)
N <- 100
x1 <- gl(12, 2, labels = LETTERS[1:12])
x2 <- gl(8, 3, labels = LETTERS[12:24])
x1 <- sample(x = x1, size=N, replace = TRUE)
x2 <- sample(x = x2, size=N, replace = TRUE)
z1 <- rnorm(N)
a1 <- rnorm(N, mean = 1.2, sd = 11.7)
a2 <- rpois(N, lambda = 10 + abs(a1))
a3 <- rgamma(N, 0.5, 4)
b1 <- rnorm(N, mean = 211.3, sd = 0.4)
dat <- data.frame(z1, a1, x2, a2, x1, a3, b1)
summary(dat)
summarize(dat)
summarize(dat, digits = 4)
summarize(dat, stats = c("min", "max", "mean", "sd"),
probs = c(0.25, 0.75))
summarize(dat, probs = c(0, 0.20, 0.80),
stats = c("nobs", "mean", "med", "entropy"))
summarize(dat, probs = c(0, 0.20, 0.50),
stats = c("nobs", "nmiss", "mean", "entropy"), maxLevels=10)
dat.sum <- summarize(dat, probs = c(0, 0.20, 0.50),
stats = c("nobs", "nmiss", "mean", "entropy"), maxLevels=10)
dat.sum
## Inspect unformatted structure of objects within return
dat.sum[["numerics"]]
dat.sum[["factors"]]
## Only quantile values, no summary stats for numeric variables
## Discrete variables get entropy
summarize(dat,
probs = c(0, 0.25, 0.50, 0.75, 1.0),
stats = "entropy", digits = 2)
## Quantiles and the mean for numeric variables.
## No diversity stats for discrete variables (entropy omitted)
summarize(dat,
probs = c(0, 0.25, 0.50, 0.75, 1.0),
stats = "mean")
summarize(dat,
probs = NULL,
stats = "mean")
## Note: output is not beautified by a print method
dat.sn <- summarizeNumerics(dat)
dat.sn
formatSummarizedNumerics(dat.sn)
formatSummarizedNumerics(dat.sn, digits = 5)
dat.summ <- summarize(dat)
dat.sf <- summarizeFactors(dat, maxLevels = 20)
dat.sf
formatSummarizedFactors(dat.sf)
## See actual values of factor summaries, without
## beautified printing
summarizeFactors(dat, maxLevels = 5)
formatSummarizedFactors(summarizeFactors(dat, maxLevels = 5))
summarize(dat, alphaSort = TRUE)
summarize(dat, digits = 6, alphaSort = FALSE)
summarize(dat, maxLevels = 2)
datsumm <- summarize(dat, stats = c("mean", "sd", "var", "entropy", "nobs"))
## Unbeautified numeric data frame, variables on the rows
datsumm[["numerics"]]
## Beautified versions 1. shows saved version:
attr(datsumm, "numeric.formatted")
## 2. Run formatSummarizedNumerics to re-specify digits:
formatSummarizedNumerics(datsumm[["numerics"]], digits = 10)
datsumm[["factors"]]
formatSummarizedFactors(datsumm[["factors"]])
formatSummarizedFactors(datsumm[["factors"]], digits = 6, maxLevels = 10)