summary.lmrob {robustbase} | R Documentation |
Summary Method for "lmrob" Objects
Description
Summary method for R object of class "lmrob"
and
print
method for the summary object.
Further, methods fitted()
, residuals()
work (via the default methods), and
predict()
(see predict.lmrob
,
vcov()
, weights()
(see
weights.lmrob
), model.matrix()
,
confint()
, dummy.coef()
,
hatvalues()
, etc.,
have explicitly defined lmrob
methods. .lmrob.hat()
is
the lower level “work horse” of the hatvalues()
method.
Usage
## S3 method for class 'lmrob'
summary(object, correlation = FALSE,
symbolic.cor = FALSE, ...)
## S3 method for class 'summary.lmrob'
print(x, digits = max(3, getOption("digits") - 3),
symbolic.cor= x$symbolic.cor,
signif.stars = getOption("show.signif.stars"),
showAlgo = TRUE, ...)
## S3 method for class 'lmrob'
vcov(object, cov = object$control$cov, complete = TRUE, ...)
## S3 method for class 'lmrob'
model.matrix(object, ...)
Arguments
object |
an R object of class |
correlation |
logical variable indicating whether to compute the correlation matrix of the estimated coefficients. |
symbolic.cor |
logical indicating whether to use symbols to display the above correlation matrix. |
x |
an R object of class |
digits |
number of digits for printing, see |
signif.stars |
logical variable indicating whether to use stars to display different levels of significance in the individual t-tests. |
showAlgo |
optional |
cov |
covariance estimation function to use, a
object$cov <- vcov(object, cov = ".vcov.w") allows to update the fitted object. |
complete |
(mainly for R |
... |
potentially more arguments passed to methods. |
Value
summary(object)
returns an object of S3 class
"summary.lmrob"
, basically a list
with components
"call", "terms", "residuals", "scale", "rweights", "converged",
"iter", "control" all copied from object
, and further
components, partly for compatibility with summary.lm
,
coefficients |
a |
df |
degrees of freedom, in an |
sigma |
identical to |
aliased |
.. |
cov |
derived from |
r.squared |
robust “R squared” or |
adj.r.squared |
an adjusted R squared, see |
References
Renaud, O. and Victoria-Feser, M.-P. (2010). A robust coefficient of determination for regression, Journal of Statistical Planning and Inference 140, 1852-1862.
See Also
lmrob
, predict.lmrob
,
weights.lmrob
, summary.lm
,
print
, summary
.
Examples
mod1 <- lmrob(stack.loss ~ ., data = stackloss)
sa <- summary(mod1) # calls summary.lmrob(....)
sa # dispatches to call print.summary.lmrob(....)
## correlation between estimated coefficients:
cov2cor(vcov(mod1))
cbind(fit = fitted(mod1), resid = residuals(mod1),
wgts= weights(mod1, type="robustness"),
predict(mod1, interval="prediction"))
data(heart)
sm2 <- summary( m2 <- lmrob(clength ~ ., data = heart) )
sm2