| predict.glmrob {robustbase} | R Documentation | 
Predict Method for Robust GLM ("glmrob") Fits
Description
Obtains predictions and optionally estimates standard errors of those predictions from a fitted robust generalized linear model (GLM) object.
Usage
## S3 method for class 'glmrob'
predict(object, newdata = NULL,
       type = c("link", "response", "terms"), se.fit = FALSE,
       dispersion = NULL, terms = NULL, na.action = na.pass, ...)
Arguments
object | 
 a fitted object of class inheriting from   | 
newdata | 
 optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.  | 
type | 
 the type of prediction required.  The default is on the
scale of the linear predictors; the alternative  The value of this argument can be abbreviated.  | 
se.fit | 
 logical switch indicating if standard errors are required.  | 
dispersion | 
 the dispersion of the GLM fit to be assumed in
computing the standard errors.  If omitted, that returned by
  | 
terms | 
 with   | 
na.action | 
 function determining what should be done with missing
values in   | 
... | 
 optional further arguments, currently simply passed to
  | 
Value
If se = FALSE, a vector or matrix of predictions.
If se = TRUE, a list with components
fit | 
 Predictions  | 
se.fit | 
 Estimated standard errors  | 
residual.scale | 
 A scalar giving the square root of the dispersion used in computing the standard errors.  | 
Author(s)
Andreas Ruckstuhl
See Also
glmrob() to fit these robust GLM models,
residuals.glmrob() and other methods;
predict.lm(), the method used for a non-robust fit.
Examples
data(carrots)
## simplistic testing & training:
i.tr <- sample(24, 20)
fm1 <- glmrob(cbind(success, total-success) ~ logdose + block,
              family = binomial, data = carrots, subset = i.tr)
fm1
predict(fm1, carrots[-i.tr, ]) # --> numeric vector
predict(fm1, carrots[-i.tr, ],
        type="response", se = TRUE)# -> a list
data(vaso)
Vfit <- glmrob(Y ~ log(Volume) + log(Rate), family=binomial, data=vaso)
newd <- expand.grid(Volume = (V. <- seq(.5, 4, by = 0.5)),
                    Rate   = (R. <- seq(.25,4, by = 0.25)))
p <- predict(Vfit, newd)
filled.contour(V., R., matrix(p, length(V.), length(R.)),
      main = "predict(glmrob(., data=vaso))", xlab="Volume", ylab="Rate")