| lmrob..M..fit {robustbase} | R Documentation | 
Compute M-estimators of regression
Description
This function performs RWLS iterations to find an
M-estimator of regression.  When started from an S-estimated
beta.initial, this results in an MM-estimator.
Usage
lmrob..M..fit(x = obj$x, y = obj$y,
              beta.initial = obj$coef, scale = obj$scale, control = obj$control,
              obj,
              mf,
              method = obj$control$method)
Arguments
x | 
 design matrix (  | 
y | 
 numeric response vector (of length   | 
beta.initial | 
 numeric vector (of length   | 
scale | 
 robust residual scale estimate. Usually an S-scale estimator.  | 
control | 
 list of control parameters, as returned
by   | 
obj | 
 an optional   | 
mf | 
 defunct.  | 
method | 
 optional; the   | 
Details
This function is used by lmrob.fit (and
anova(<lmrob>, type = "Deviance")) and typically not to be used
on its own.
Value
A list with the following elements:
coef | 
 the M-estimator (or MM-estim.) of regression  | 
control | 
 the   | 
scale | 
 The residual scale estimate  | 
seed | 
 The random number generator seed  | 
converged | 
  
  | 
Author(s)
Matias Salibian-Barrera and Martin Maechler
References
Yohai, 1987
See Also
lmrob.fit, lmrob;
rlm from package MASS.
Examples
data(stackloss)
X <- model.matrix(stack.loss ~ . , data = stackloss)
y <- stack.loss
## Compute manual MM-estimate:
## 1) initial LTS:
m0 <- ltsReg(X[,-1], y)
## 2) M-estimate started from LTS:
m1 <- lmrob..M..fit(X, y, beta.initial = coef(m0), scale = m0$scale, method = "SM",
                    control = lmrob.control(tuning.psi = 1.6, psi = 'bisquare'))
## no 'method' (nor 'obj'):
m1. <- lmrob..M..fit(X, y, beta.initial = coef(m0), scale = m0$scale,
                     control = m1$control)
stopifnot(all.equal(m1, m1., tol = 1e-15)) # identical {call *not* stored!}
cbind(m0$coef, m1$coef)
## the scale is kept fixed:
stopifnot(identical(unname(m0$scale), m1$scale))
##  robustness weights: are
r.s <- with(m1, residuals/scale) # scaled residuals
m1.wts <- Mpsi(r.s, cc = 1.6, psi="tukey") / r.s
summarizeRobWeights(m1.wts)
##--> outliers 1,3,4,13,21
which(m0$lts.wt == 0) # 1,3,4,21 but not 13
## Manually add M-step to SMD-estimate (=> equivalent to "SMDM"):
m2 <- lmrob(stack.loss ~ ., data = stackloss, method = 'SMD')
m3 <- lmrob..M..fit(obj = m2)
## Simple function that allows custom initial estimates
## (Deprecated; use init argument to lmrob() instead.) %% MM: why deprecated?
lmrob.custom <- function(x, y, beta.initial, scale, terms) {
  ## initialize object
  obj <- list(control = lmrob.control("KS2011"),
              terms = terms) ## terms is needed for summary()
  ## M-step
  obj <- lmrob..M..fit(x, y, beta.initial, scale, obj = obj)
  ## D-step
  obj <- lmrob..D..fit(obj, x)
  ## Add some missing elements
  obj$cov <- TRUE ## enables calculation of cov matrix
  obj$p <- obj$qr$rank
  obj$degree.freedom <- length(y) - obj$p
  ## M-step
  obj <- lmrob..M..fit(x, y, obj=obj)
  obj$control$method <- ".MDM"
  obj
}
m4 <- lmrob.custom(X, y, m2$init$init.S$coef,
                   m2$init$scale, m2$terms)
stopifnot(all.equal(m4$coef, m3$coef))
## Start from ltsReg:
m5 <- ltsReg(stack.loss ~ ., data = stackloss)
m6 <- lmrob.custom(m5$X, m5$Y, coef(m5), m5$scale, m5$terms)