Sn {robustbase} | R Documentation |
Robust Location-Free Scale Estimate More Efficient than MAD
Description
Compute the robust scale estimator S_n
, an efficient
alternative to the MAD.
Usage
Sn(x, constant = 1.1926, finite.corr = missing(constant), na.rm = FALSE)
s_Sn(x, mu.too = FALSE, ...)
Arguments
x |
numeric vector of observations. |
constant |
number by which the result is multiplied; the default achieves consisteny for normally distributed data. |
finite.corr |
logical indicating if the finite sample bias
correction factor should be applied. Default to |
na.rm |
logical specifying if missing values ( |
mu.too |
logical indicating if the |
... |
potentially further arguments for |
Details
............ FIXME ........
Value
Sn()
returns a number, the S_n
robust scale estimator, scaled to be
consistent for \sigma^2
and i.i.d. Gaussian observations,
optionally bias corrected for finite samples.
s_Sn(x, mu.too=TRUE)
returns a length-2 vector with location
(\mu
) and scale; this is typically only useful for
covOGK(*, sigmamu = s_Sn)
.
Author(s)
Original Fortran code:
Christophe Croux and Peter Rousseeuw rousse@wins.uia.ac.be.
Port to C and R: Martin Maechler, maechler@R-project.org
References
Rousseeuw, P.J. and Croux, C. (1993) Alternatives to the Median Absolute Deviation, Journal of the American Statistical Association 88, 1273–1283.
See Also
mad
for the ‘most robust’ but much
less efficient scale estimator;
Qn
for a similar more efficient but slower alternative;
scaleTau2
.
Examples
x <- c(1:10, 100+1:9)# 9 outliers out of 19
Sn(x)
Sn(x, c=1)# 9
Sn(x[1:18], c=1)# 9
set.seed(153)
x <- sort(c(rnorm(80), rt(20, df = 1)))
s_Sn(x, mu.too=TRUE)
(s <- Sn(c(1:4, 10, Inf, NA), na.rm=TRUE))
stopifnot(is.finite(s), all.equal(3.5527554, s, tol=1e-10))