Animals2 {robustbase} | R Documentation |
Brain and Body Weights for 65 Species of Land Animals
Description
A data frame with average brain and body weights for 62 species of land mammals and three others.
Note that this is simply the union of Animals
and mammals
.
Usage
Animals2
Format
body
body weight in kg
brain
brain weight in g
Note
After loading the MASS package, the data set is simply constructed by
Animals2 <- local({D <- rbind(Animals, mammals);
unique(D[order(D$body,D$brain),])})
.
Rousseeuw and Leroy (1987)'s ‘brain’ data is the same as
MASS's Animals
(with Rat and Brachiosaurus interchanged,
see the example below).
Source
Weisberg, S. (1985) Applied Linear Regression. 2nd edition. Wiley, pp. 144–5.
P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley, p. 57.
References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Forth Edition. Springer.
Examples
data(Animals2)
## Sensible Plot needs doubly logarithmic scale
plot(Animals2, log = "xy")
## Regression example plot:
plotbb <- function(bbdat) {
d.name <- deparse(substitute(bbdat))
plot(log(brain) ~ log(body), data = bbdat, main = d.name)
abline( lm(log(brain) ~ log(body), data = bbdat))
abline(MASS::rlm(log(brain) ~ log(body), data = bbdat), col = 2)
legend("bottomright", leg = c("lm", "rlm"), col=1:2, lwd=1, inset = 1/20)
}
plotbb(bbdat = Animals2)
## The `same' plot for Rousseeuw's subset:
data(Animals, package = "MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
plotbb(bbdat = brain)
lbrain <- log(brain)
plot(mahalanobis(lbrain, colMeans(lbrain), var(lbrain)),
main = "Classical Mahalanobis Distances")
mcd <- covMcd(lbrain)
plot(mahalanobis(lbrain,mcd$center,mcd$cov),
main = "Robust (MCD) Mahalanobis Distances")