predictr {rnn} | R Documentation |
Recurrent Neural Network
Description
predict the output of a RNN model
Usage
predictr(model, X, hidden = FALSE, real_output = T, ...)
Arguments
model |
output of the trainr function |
X |
array of input values, dim 1: samples, dim 2: time, dim 3: variables (could be 1 or more, if a matrix, will be coerce to array) |
should the function output the hidden units states | |
real_output |
option used when the function in called inside trainr, do not drop factor for 2 dimension array output and other actions. Let it to TRUE, the default, to let the function take care of the data. |
... |
arguments to pass on to sigmoid function |
Value
array or matrix of predicted values
Examples
## Not run:
# create training numbers
X1 = sample(0:127, 10000, replace=TRUE)
X2 = sample(0:127, 10000, replace=TRUE)
# create training response numbers
Y <- X1 + X2
# convert to binary
X1 <- int2bin(X1)
X2 <- int2bin(X2)
Y <- int2bin(Y)
# Create 3d array: dim 1: samples; dim 2: time; dim 3: variables.
X <- array( c(X1,X2), dim=c(dim(X1),2) )
# train the model
model <- trainr(Y=Y[,dim(Y)[2]:1],
X=X[,dim(X)[2]:1,],
learningrate = 1,
hidden_dim = 16 )
# create test inputs
A1 = int2bin( sample(0:127, 7000, replace=TRUE) )
A2 = int2bin( sample(0:127, 7000, replace=TRUE) )
# create 3d array: dim 1: samples; dim 2: time; dim 3: variables
A <- array( c(A1,A2), dim=c(dim(A1),2) )
# predict
B <- predictr(model,
A[,dim(A)[2]:1,] )
B = B[,dim(B)[2]:1]
# convert back to integers
A1 <- bin2int(A1)
A2 <- bin2int(A2)
B <- bin2int(B)
# inspect the differences
table( B-(A1+A2) )
# plot the difference
hist( B-(A1+A2) )
## End(Not run)
[Package rnn version 1.9.0 Index]