finterp {rmutil} | R Documentation |
Formula Interpreter
Description
finterp
translates a model formula into a function of the
unknown parameters or of a vector of them. Such language formulae can
either be in Wilkinson and Rogers notation or be expressions
containing both known (existing) covariates and unknown (not existing)
parameters. In the latter, factor variables cannot be used and
parameters must be scalars.
The covariates in the formula are sought in the environment or in the
data object provided. If the data object has class, repeated
or
response
, then the key words, times
will use the
response times from the data object as a covariate, individuals
will use the index for individuals as a factor covariate, and
nesting
the index for nesting as a factor covariate. The latter
two only work for W&R notation.
Note that, in parameter displays, formulae in Wilkinson and Rogers notation use variable names whereas those with unknowns use the names of these parameters, as given in the formulae, and that the meaning of operators (*, /, :, etc.) is different in the two cases.
Usage
finterp(.z, ...)
## Default S3 method:
finterp(.z, .envir=parent.frame(), .formula=FALSE, .vector=TRUE,
.args=NULL, .start=1, .name=NULL, .expand=TRUE, .intercept=TRUE,
.old=NULL, .response=FALSE, ...)
Arguments
.z |
A model formula beginning with ~, either in Wilkinson and Rogers notation or containing unknown parameters. If it contains unknown parameters, it can have several lines so that, for example, local variables can be assigned temporary values. In this case, enclose the formula in curly brackets. |
.envir |
The environment in which the formula is to be
interpreted or a data object of class, |
.formula |
If TRUE and the formula is in Wilkinson and Rogers notation, just returns the formula. |
.vector |
If FALSE and the formula contains unknown parameters,
the function returned has them as separate arguments. If TRUE, it has
one argument, the unknowns as a vector, unless certain parameter names
are specified in |
.args |
If |
.start |
The starting index value of the parameter vector in the
function returned when |
.name |
Character string giving the name of the data object
specified by |
.expand |
If TRUE, expand functions with only time-constant
covariates to return one value per observation instead of one value
per individual. Ignored unless |
.intercept |
If W&R notation is supplied and |
.old |
The name of an existing object of class |
.response |
If TRUE, any response variable can be used in the function. If FALSE, checks are made that the response is not also used as a covariate. |
... |
Arguments passed to other functions. |
Value
A function, of class formulafn
, of the unknown parameters or of a
vector of them is returned. Its attributes give the formula supplied,
the model function produced, the covariate names, the parameter names,
and the range of values of the index of the parameter vector. If
formula
is TRUE and a Wilkinson and Rogers formula was
supplied, it is simply returned instead of creating a function.
Author(s)
J.K. Lindsey
See Also
FormulaMethods
, covariates
,
fnenvir
, formula
,
model
, parameters
Examples
x1 <- rpois(20,2)
x2 <- rnorm(20)
#
# Wilkinson and Rogers formula with three parameters
fn1 <- finterp(~x1+x2)
fn1
fn1(rep(2,3))
# the same formula with unknowns
fn2 <- finterp(~b0+b1*x1+b2*x2)
fn2
fn2(rep(2,3))
#
# nonlinear formulae with unknowns
# log link
fn2a <- finterp(~exp(b0+b1*x1+b2*x2))
fn2a
fn2a(rep(0.2,3))
# parameters common to two functions
fn2b <- finterp(~c0+c1*exp(b0+b1*x1+b2*x2), .old=fn2a, .start=4)
fn2b
# function returned also depends on values of another function
fn2c <- finterp(~fn2+c1*exp(b0+b1*x1+b2*x2), .old=fn2a,
.start=4, .args="fn2")
fn2c
args(fn2c)
fn2c(rep(0.2,4),fn2(rep(2,3)))
#
# compartment model
times <- 1:20
# exp() parameters to ensure that they are positive
fn3 <- finterp(~exp(absorption-volume)/(exp(absorption)-
exp(elimination))*(exp(-exp(elimination)*times)-
exp(-exp(absorption)*times)))
fn3
fn3(log(c(0.3,3,0.2)))
# a more efficient way
# (note that parameters do not appear in the same order)
form <- ~{
ka <- exp(absorption)
ke <- exp(elimination)
ka*exp(-volume)/(ka-ke)*(exp(-ke*times)-exp(-ka*times))}
fn3a <- finterp(form)
fn3a(log(c(0.3,0.2,3)))
#
# Poisson density
y <- rpois(20,5)
fn4 <- finterp(~mu^y*exp(-mu)/gamma(y+1))
fn4
fn4(5)
dpois(y,5)
#
# Poisson likelihood
# mean parameter
fn5 <- finterp(~-y*log(mu)+mu+lgamma(y+1),.vector=FALSE)
fn5
likefn1 <- function(p) sum(fn5(mu=p))
nlm(likefn1,p=1)
mean(y)
# canonical parameter
fn5a <- finterp(~-y*theta+exp(theta)+lgamma(y+1),.vector=FALSE)
fn5a
likefn1a <- function(p) sum(fn5a(theta=p))
nlm(likefn1a,p=1)
#
# likelihood for Poisson log linear regression
y <- rpois(20,fn2a(c(0.2,1,0.4)))
nlm(likefn1,p=1)
mean(y)
likefn2 <- function(p) sum(fn5(mu=fn2a(p)))
nlm(likefn2,p=c(1,0,0))
# or
likefn2a <- function(p) sum(fn5a(theta=fn2(p)))
nlm(likefn2a,p=c(1,0,0))
#
# likelihood for Poisson nonlinear regression
y <- rpois(20,fn3(log(c(3,0.3,0.2))))
nlm(likefn1,p=1)
mean(y)
likefn3 <- function(p) sum(fn5(mu=fn3(p)))
nlm(likefn3,p=log(c(1,0.4,0.1)))
#
# envir as data objects
y <- matrix(rnorm(20),ncol=5)
y[3,3] <- y[2,2] <- NA
x1 <- 1:4
x2 <- c("a","b","c","d")
resp <- restovec(y)
xx <- tcctomat(x1)
xx2 <- tcctomat(data.frame(x1,x2))
z1 <- matrix(rnorm(20),ncol=5)
z2 <- matrix(rnorm(20),ncol=5)
z3 <- matrix(rnorm(20),ncol=5)
zz <- tvctomat(z1)
zz <- tvctomat(z2,old=zz)
reps <- rmna(resp, ccov=xx, tvcov=zz)
reps2 <- rmna(resp, ccov=xx2, tvcov=zz)
rm(y, x1, x2 , z1, z2)
#
# repeated objects
#
# time-constant covariates
# Wilkinson and Rogers notation
form1 <- ~x1
print(fn1 <- finterp(form1, .envir=reps))
fn1(2:3)
print(fn1a <- finterp(form1, .envir=xx))
fn1a(2:3)
form1b <- ~x1+x2
print(fn1b <- finterp(form1b, .envir=reps2))
fn1b(2:6)
print(fn1c <- finterp(form1b, .envir=xx2))
fn1c(2:6)
# with unknown parameters
form2 <- ~a+b*x1
print(fn2 <- finterp(form2, .envir=reps))
fn2(2:3)
print(fn2a <- finterp(form2, .envir=xx))
fn2a(2:3)
#
# time-varying covariates
# Wilkinson and Rogers notation
form3 <- ~z1+z2
print(fn3 <- finterp(form3, .envir=reps))
fn3(2:4)
print(fn3a <- finterp(form3, .envir=zz))
fn3a(2:4)
# with unknown parameters
form4 <- ~a+b*z1+c*z2
print(fn4 <- finterp(form4, .envir=reps))
fn4(2:4)
print(fn4a <- finterp(form4, .envir=zz))
fn4a(2:4)
#
# note: lengths of x1 and z2 differ
# Wilkinson and Rogers notation
form5 <- ~x1+z2
print(fn5 <- finterp(form5, .envir=reps))
fn5(2:4)
# with unknown parameters
form6 <- ~a+b*x1+c*z2
print(fn6 <- finterp(form6, .envir=reps))
fn6(2:4)
#
# with times
# Wilkinson and Rogers notation
form7 <- ~x1+z2+times
print(fn7 <- finterp(form7, .envir=reps))
fn7(2:5)
form7a <- ~x1+x2+z2+times
print(fn7a <- finterp(form7a, .envir=reps2))
fn7a(2:8)
# with unknown parameters
form8 <- ~a+b*x1+c*z2+e*times
print(fn8 <- finterp(form8, .envir=reps))
fn8(2:5)
#
# with a variable not in the data object
form9 <- ~a+b*z1+c*z2+e*z3
print(fn9 <- finterp(form9, .envir=reps))
fn9(2:5)
# z3 assumed to be an unknown parameter:
fn9(2:6)
#
# multiline formula
form10 <- ~{
tmp <- exp(b)
a+tmp*z1+c*z2+d*times}
print(fn10 <- finterp(form10, .envir=reps))
fn10(2:5)