PowerExponential {rmutil} | R Documentation |
Power Exponential Distribution
Description
These functions provide information about the power exponential
distribution with mean parameter equal to m
, dispersion equal
to s
, and family parameter equal to f
: density,
cumulative distribution, quantiles, log hazard, and random generation.
The power exponential distribution has density
f(y) = \frac{\exp(-(abs{y-\mu}/\sqrt{\sigma})^{2 \nu}/2)}{
\sqrt{\sigma} Gamma(1+1/(2 \nu)) 2^{1+1/(2 \nu)}}
where \mu
is the mean of the distribution,
\sigma
is the dispersion, and \nu
is the family
parameter. \nu=1
yields a normal distribution,
\nu=0.5
a Laplace distribution, and
\nu=\infty
a uniform distribution.
Usage
dpowexp(y, m=0, s=1, f=1, log=FALSE)
ppowexp(q, m=0, s=1, f=1)
qpowexp(p, m=0, s=1, f=1)
rpowexp(n, m=0, s=1, f=1)
Arguments
y |
vector of responses. |
q |
vector of quantiles. |
p |
vector of probabilities |
n |
number of values to generate |
m |
vector of means. |
s |
vector of dispersion parameters. |
f |
vector of family parameters. |
log |
if TRUE, log probabilities are supplied. |
Author(s)
J.K. Lindsey
Examples
dpowexp(5, 5, 1, 2)
ppowexp(5, 5, 1, 2)
qpowexp(0.5, 5, 1, 2)
rpowexp(10, 5, 1, 2)