Generalized Gamma {rmutil} | R Documentation |
Generalized Gamma Distribution
Description
These functions provide information about the generalized gamma
distribution with scale parameter equal to m
, shape equal
to s
, and family parameter equal to f
: density,
cumulative distribution, quantiles, log hazard, and random generation.
The generalized gamma distribution has density
f(y) = \frac{\nu y^{\nu-1}}
{(\mu/\sigma)^{\nu\sigma} Gamma(\sigma)} y^{\nu(\sigma-1)}
\exp(-(y \sigma/\mu)^\nu)
where \mu
is the scale parameter of the distribution,
\sigma
is the shape, and \nu
is the family
parameter.
\nu=1
yields a gamma distribution, \sigma=1
a
Weibull distribution, and \sigma=\infty
a
log normal distribution.
Usage
dggamma(y, s, m, f, log=FALSE)
pggamma(q, s, m, f)
qggamma(p, s, m, f)
rggamma(n, s, m, f)
Arguments
y |
vector of responses. |
q |
vector of quantiles. |
p |
vector of probabilities |
n |
number of values to generate |
m |
vector of location parameters. |
s |
vector of dispersion parameters. |
f |
vector of family parameters. |
log |
if TRUE, log probabilities are supplied. |
Author(s)
J.K. Lindsey
See Also
dgamma
for the gamma distribution,
dweibull
for the Weibull distribution, dlnorm
for the log normal distribution.
Examples
dggamma(2, 5, 4, 2)
pggamma(2, 5, 4, 2)
qggamma(0.75, 5, 4, 2)
rggamma(10, 5, 4, 2)