Box-Cox {rmutil} | R Documentation |
Box-Cox Distribution
Description
These functions provide information about the Box-Cox
distribution with location parameter equal to m
, dispersion
equal to s
, and power transformation equal to f
: density,
cumulative distribution, quantiles, log hazard, and random generation.
The Box-Cox distribution has density
f(y) =
\frac{1}{\sqrt{2 \pi \sigma^2}} \exp(-((y^\nu/\nu-\mu)^2/(2 \sigma^2)))/
(1-I(\nu<0)-sign(\nu)*pnorm(0,\mu,sqrt(\sigma)))
where \mu
is the location parameter of the distribution,
\sigma
is the dispersion, \nu
is the family
parameter, I()
is the indicator function, and y>0
.
\nu=1
gives a truncated normal distribution.
Usage
dboxcox(y, m, s=1, f=1, log=FALSE)
pboxcox(q, m, s=1, f=1)
qboxcox(p, m, s=1, f=1)
rboxcox(n, m, s=1, f=1)
Arguments
y |
vector of responses. |
q |
vector of quantiles. |
p |
vector of probabilities |
n |
number of values to generate |
m |
vector of location parameters. |
s |
vector of dispersion parameters. |
f |
vector of power parameters. |
log |
if TRUE, log probabilities are supplied. |
Author(s)
J.K. Lindsey
See Also
dnorm
for the normal or Gaussian distribution.
Examples
dboxcox(2, 5, 5, 2)
pboxcox(2, 5, 5, 2)
qboxcox(0.1, 5, 5, 2)
rboxcox(10, 5, 5, 2)