Beta Binomial {rmutil} | R Documentation |
Beta Binomial Distribution
Description
These functions provide information about the beta binomial
distribution with parameters m
and s
: density,
cumulative distribution, quantiles, and random generation.
Compared to the parameterization of 'VGAM::pbetabinom.ab',
m = alpha/(alpha+beta)
and s = (alpha+beta)
.
See examples.
The beta binomial distribution with total = n
and
prob
= m
has density
p(y) = \frac{B(y+\sigma \mu, n-y+\sigma*(1-\mu)) {n \choose y}
}{B(s m,s (1-m))}%
for y = 0, \ldots, n
where B()
is the beta function.
Usage
dbetabinom(y, size, m, s, log=FALSE)
pbetabinom(q, size, m, s)
qbetabinom(p, size, m, s)
rbetabinom(n, size, m, s)
Arguments
y |
vector of frequencies |
q |
vector of quantiles |
p |
vector of probabilities |
n |
number of values to generate |
size |
vector of totals |
m |
vector of probabilities of success; Compared to the parameterization of 'VGAM::pbetabinom.ab',
|
s |
vector of overdispersion parameters; Compared to the parameterization of 'VGAM::pbetabinom.ab', |
log |
if TRUE, log probabilities are supplied. |
Author(s)
J.K. Lindsey
See Also
dbinom
for the binomial, ddoublebinom
for
the double binomial, and dmultbinom
for the multiplicative binomial distribution.
Examples
# compute P(45 < y < 55) for y beta binomial(100,0.5,1.1)
sum(dbetabinom(46:54, 100, 0.5, 1.1))
pbetabinom(54,100,0.5,1.1)-pbetabinom(45,100,0.5,1.1)
pbetabinom(2,10,0.5,1.1)
qbetabinom(0.33,10,0.5,1.1)
rbetabinom(10,10,0.5,1.1)
## compare to VGAM
## Not run:
# The beta binomial distribution with total = n and prob = m has density
#
# p(y) = B(y+s m,n-y+s (1-m)) Choose(n,y) / B(s m,s (1-m))
#
# for y = 0, …, n where B() is the beta function.
## in `rmutil` from the .Rd file (excerpt above), the "alpha" is s*m
## in `rmutil` from the .Rd file (excerpt above), the "beta" is s*(1-m)
## in `VGAM`, rho is 1/(1+alpha+beta)
qq = 2.2
zz = 100
alpha = 1.1
beta = 2
VGAM::pbetabinom.ab(q=qq, size=zz, shape1=alpha, shape2=beta)
## for VGAM `rho`
rr = 1/(1+alpha+beta)
VGAM::pbetabinom (q=qq, size=zz, prob=mm, rho = rr)
## for rmutil `m` and `s`:
mm = alpha / (alpha+beta)
ss = (alpha+beta)
rmutil::pbetabinom(q=qq, size=zz, m=mm, s=ss )
## End(Not run)