GR_est {rlme} | R Documentation |
GR Method
Description
Fits a model using the GR method
Usage
GR_est(x, y, I, sec, mat, school, section, rprpair = "hl-disp",
verbose = FALSE)
Arguments
x |
Covariate matrix or data frame. |
y |
Response matrix or data frame. |
I |
Number of clusters |
sec |
A vector of subcluster numbers in clusters. |
mat |
A matrix of numbers of observations in subclusters. Dimension is Ixmax(number ofsubclusters). Each row indicates one cluster. |
school |
A vector of clusters, nx1. |
section |
A vector of subclusters, nx1. |
rprpair |
By default, it uses "hl-disp" in the random prediction procedure (RPP). Also, "med-mad" would be an alternative. |
verbose |
Boolean indicating whether to print out messages from the algorithm. |
Value
theta |
Fixed effect estimates. |
ses |
Standard error for the fixed esimates. |
sigma |
Variances of cluster, subcluster, and residual. |
ehat |
Raw error. |
ehats |
Independence error from last weighted step. |
effect_sch |
Cluster random error. |
effect_sec |
Subcluster random error. |
effect_err |
Epsilon error. |
Author(s)
Yusuf Bilgic
Examples
# See rlme function