| runCluster {rliger} | R Documentation |
SNN Graph Based Community Detection
Description
After quantile normalization, users can additionally run the Leiden or Louvain algorithm for community detection, which is widely used in single-cell analysis and excels at merging small clusters into broad cell classes.
While using quantile normalized factor loadings (result from
quantileNorm) is recommended, this function looks for
unnormalized factor loadings (result from runIntegration) when
the former is not available.
Usage
runCluster(
object,
resolution = 1,
nNeighbors = 20,
prune = 1/15,
eps = 0.1,
nRandomStarts = 10,
nIterations = 5,
method = c("leiden", "louvain"),
useRaw = NULL,
useDims = NULL,
groupSingletons = TRUE,
saveSNN = FALSE,
clusterName = paste0(method, "_cluster"),
seed = 1,
verbose = getOption("ligerVerbose", TRUE)
)
Arguments
object |
A liger object. Should have valid factorization result available. |
resolution |
Numeric, value of the resolution parameter, a larger value
results in a larger number of communities with smaller sizes. Default
|
nNeighbors |
Integer, the maximum number of nearest neighbors to
compute. Default |
prune |
Numeric. Sets the cutoff for acceptable Jaccard index when
computing the neighborhood overlap for the SNN construction. Any edges with
values less than or equal to this will be set to 0 and removed from the SNN
graph. Essentially sets the stringency of pruning. |
eps |
Numeric, the error bound of the nearest neighbor search. Default
|
nRandomStarts |
Integer number of random starts. Will pick the
membership with highest quality to return. Default |
nIterations |
Integer, maximal number of iterations per random start.
Default |
method |
Community detection algorithm to use. Choose from
|
useRaw |
Whether to use un-aligned cell factor loadings ( |
useDims |
Indices of factors to use for clustering. Default |
groupSingletons |
Whether to group single cells that make up their own
cluster in with the cluster they are most connected to. Default |
saveSNN |
Logical, whether to store the SNN graph, as a dgCMatrix
object, in the object. Default |
clusterName |
Name of the variable that will store the clustering result
in |
seed |
Seed of the random number generator. Default |
verbose |
Logical. Whether to show information of the progress. Default
|
Value
object with cluster assignment updated in clusterName
variable in cellMeta slot. Can be fetched with
object[[clusterName]]. If saveSNN = TRUE, the SNN graph will
be stored at object@uns$snn.
Examples
pbmcPlot <- runCluster(pbmcPlot)
head(pbmcPlot$leiden_cluster)
pbmcPlot <- runCluster(pbmcPlot, method = "louvain")
head(pbmcPlot$louvain_cluster)