autoplot.ate {riskRegression} | R Documentation |
Plot Average Risks
Description
Plot average risks.
Usage
## S3 method for class 'ate'
autoplot(
object,
type = "meanRisk",
first.derivative = FALSE,
estimator = object$estimator[1],
ci = object$inference$ci,
band = object$inference$band,
plot.type = "1",
plot = TRUE,
smooth = FALSE,
digits = 2,
alpha = NA,
ylab = NULL,
...
)
Arguments
object |
Object obtained with the function |
type |
[character vector] what to displayed.
Can be |
first.derivative |
[logical] If |
estimator |
[character] The type of estimator relative to which the risks should be displayed. |
ci |
[logical] If |
band |
[logical] If |
plot.type |
[character] Type of plot to be used.
|
plot |
[logical] Should the graphic be plotted. |
smooth |
[logical] Should a smooth version of the risk function be plotted instead of a simple function? |
digits |
[integer, >0] Number of decimal places. |
alpha |
[numeric, 0-1] Transparency of the confidence bands. Argument passed to |
ylab |
[character] Label for the y axis. |
... |
Additional parameters to cutomize the display. |
Value
Invisible. A list containing:
plot: the ggplot object.
data: the data used to create the plot.
See Also
ate
to compute average risks.
Examples
library(survival)
library(rms)
library(ggplot2)
#### simulate data ####
n <- 1e2
set.seed(10)
dtS <- sampleData(n,outcome="survival")
seqTimes <- c(0,sort(dtS$time[dtS$event==1]),max(dtS$time))
#### Cox model ####
fit <- cph(formula = Surv(time,event)~ X1+X2,data=dtS,y=TRUE,x=TRUE)
#### plot.type = 1: for few timepoints ####
ateFit <- ate(fit, data = dtS, treatment = "X1",
times = c(1,2,5,10), se = TRUE, band = TRUE)
ggplot2::autoplot(ateFit)
## Not run:
ggplot2::autoplot(ateFit, band = FALSE)
ggplot2::autoplot(ateFit, type = "diffRisk")
ggplot2::autoplot(ateFit, type = "ratioRisk")
## End(Not run)
#### plot.type = 2: when looking at all jump times ####
## Not run:
ateFit <- ate(fit, data = dtS, treatment = "X1",
times = seqTimes, se = TRUE, band = TRUE)
ggplot2::autoplot(ateFit, plot.type = "2")
## customize plot
outGG <- ggplot2::autoplot(ateFit, plot.type = "2", alpha = 0.25)
outGG$plot + facet_wrap(~X1, labeller = label_both)
## Looking at the difference after smoothing
outGGS <- ggplot2::autoplot(ateFit, plot.type = "2", alpha = NA, smooth = TRUE)
outGGS$plot + facet_wrap(~X1, labeller = label_both)
## first derivative
## (computation of the confidence intervals takes time)
## (based on simulation - n.sim parameter)
ggplot2::autoplot(ateFit, plot.type = "2", smooth = TRUE,
band = FALSE, type = "diffRisk")
ggplot2::autoplot(ateFit, plot.type = "2", smooth = TRUE, first.derivative = TRUE,
band = FALSE, type = "diffRisk")
## End(Not run)