IPA {riskRegression} | R Documentation |
Explained variation for settings with binary, survival and competing risk outcome
Description
Index of Prediction Accuracy: General R^2 for binary outcome and right censored time to event (survival) outcome also with competing risks
Usage
rsquared(object,...)
IPA(object,...)
## Default S3 method:
rsquared(object,formula,newdata,times,cause,...)
## S3 method for class 'glm'
rsquared(object,formula,newdata,...)
## S3 method for class 'coxph'
rsquared(object,formula,newdata,times,...)
## S3 method for class 'CauseSpecificCox'
rsquared(object,formula,newdata,times,cause,...)
## Default S3 method:
IPA(object,formula,newdata,times,cause,...)
## S3 method for class 'glm'
IPA(object,formula,newdata,...)
## S3 method for class 'coxph'
IPA(object,formula,newdata,times,...)
## S3 method for class 'CauseSpecificCox'
IPA(object,formula,newdata,times,cause,...)
Arguments
object |
Model for which we want IPA. |
... |
passed to |
newdata |
Optional validation data set in which to compute IPA |
formula |
Formula passed to |
cause |
For competing risk models the event of interest |
times |
Vector of time points used as prediction horizon for the computation of Brier scores. |
Details
IPA (R^2) is calculated based on the model's predicted risks. The Brier score of the model is compared to the Brier score of the null model.
Value
Data frame with explained variation values for the full model.
Author(s)
Thomas A. Gerds <tag@biostat.ku.dk>
See Also
Score
Examples
library(prodlim)
library(data.table)
# binary outcome
library(lava)
set.seed(18)
learndat <- sampleData(48,outcome="binary")
lr1 = glm(Y~X1+X2+X7+X9,data=learndat,family=binomial)
IPA(lr1)
## validation data
valdat=sampleData(94,outcome="binary")
IPA(lr1,newdata=valdat)
## predicted risks externally given
p1=predictRisk(lr1,newdata=valdat)
IPA(p1,formula=Y~1,valdat)
# survival
library(survival)
data(pbc)
pbc=na.omit(pbc)
pbctest=(1:NROW(pbc)) %in% sample(1:NROW(pbc),size=.632*NROW(pbc))
pbclearn=pbc[pbctest,]
cox1= coxph(Surv(time,status!=0)~age+sex+log(bili)+log(albumin)+log(protime),
data=pbclearn,x=TRUE)
## same data
IPA(cox1,formula=Surv(time,status!=0)~1,times=1000)
## validation data
pbcval=pbc[!pbctest,]
IPA(cox1,formula=Surv(time,status!=0)~1,newdata=pbcval,times=1000)
## predicted risks externally given
p2=predictRisk(cox1,newdata=pbcval,times=1000)
IPA(cox1,formula=Surv(time,status!=0)~1,newdata=pbcval,times=1000)
# competing risks
data(Melanoma)
Melanomatest=(1:NROW(Melanoma)) %in% sample(1:NROW(Melanoma),size=.632*NROW(Melanoma))
Melanomalearn=Melanoma[Melanomatest,]
fit1 <- CSC(list(Hist(time,status)~sex,
Hist(time,status)~invasion+epicel+age),
data=Melanoma)
IPA(fit1,times=1000,cause=2)
## validation data
Melanomaval=Melanoma[!Melanomatest,]
IPA(fit1,formula=Hist(time,status)~1,newdata=Melanomaval,times=1000)
## predicted risks externally given
p3= predictRisk(fit1,cause=1,newdata=Melanomaval,times=1000)
IPA(p3,formula=Hist(time,status)~1,cause=1,newdata=Melanomaval,times=1000)
[Package riskRegression version 2023.12.21 Index]