local_multiquantilelisa {rgeoda} | R Documentation |
Multivariate Quantile LISA Statistics
Description
The function to apply multivariate quantile LISA statistics
Usage
local_multiquantilelisa(
w,
df,
k,
q,
permutations = 999,
permutation_method = "complete",
significance_cutoff = 0.05,
cpu_threads = 6,
seed = 123456789
)
Arguments
w |
An instance of Weight object |
df |
A data frame with selected variables only. E.g. guerry[c("TopCrm", "TopWealth", "TopLit")] |
k |
A vector of "k" values indicate the number of quantiles for each variable. Value range e.g. [1, 10] |
q |
A vector of "q" values indicate which quantile or interval for each variable used in local join count statistics. Value stars from 1. |
permutations |
(optional) The number of permutations for the LISA computation |
permutation_method |
(optional) The permutation method used for the LISA computation. Options are 'complete', 'lookup'. Default is 'complete'. |
significance_cutoff |
(optional) A cutoff value for significance p-values to filter not-significant clusters |
cpu_threads |
(optional) The number of cpu threads used for parallel LISA computation |
seed |
(optional) The seed for random number generator |
Value
An instance of LISA-class
Examples
library(sf)
guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda")
guerry <- st_read(guerry_path)
queen_w <- queen_weights(guerry)
lisa <- local_multiquantilelisa(queen_w, guerry[c("Crm_prp", "Litercy")],
k=c(4,4), q=c(1,1))
clsts <- lisa_clusters(lisa)
clsts