kernel_weights {rgeoda} | R Documentation |
Distance-based Kernel Spatial Weights
Description
Create a kernel weights by specifying a bandwidth and a kernel method
Usage
kernel_weights(
sf_obj,
bandwidth,
kernel_method,
use_kernel_diagonals = FALSE,
power = 1,
is_inverse = FALSE,
is_arc = FALSE,
is_mile = TRUE
)
Arguments
sf_obj |
An sf (simple feature) object |
bandwidth |
A positive numeric value of bandwidth |
kernel_method |
a string value, which has to be one of 'triangular', 'uniform', 'epanechnikov', 'quartic', 'gaussian' |
use_kernel_diagonals |
(optional) FALSE (default) or TRUE, apply kernel on the diagonal of weights matrix |
power |
(optional) The power (or exponent) of a number says how many times to use the number in a multiplication. |
is_inverse |
(optional) FALSE (default) or TRUE, apply inverse on distance value |
is_arc |
(optional) FALSE (default) or TRUE, compute arc distance between two observations |
is_mile |
(optional) TRUE (default) or FALSE, convert distance unit from mile to km. |
Value
An instance of Weight-class
Examples
library(sf)
guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda")
guerry <- st_read(guerry_path)
bandwidth <- min_distthreshold(guerry)
kernel_w <- kernel_weights(guerry, bandwidth, kernel_method = "uniform")
summary(kernel_w)
[Package rgeoda version 0.0.10-4 Index]