fit_dist {reservr} | R Documentation |
Fit a general distribution to observations
Description
The default implementation performs maximum likelihood estimation on all placeholder parameters.
Usage
fit_dist(dist, obs, start, ...)
fit_dist_direct(dist, obs, start, ..., .start_with_default = FALSE)
## S3 method for class 'Distribution'
fit(object, obs, start, ...)
Arguments
dist |
A |
obs |
Set of observations as produced by |
start |
Initial values of all placeholder parameters.
If missing, starting values are obtained from |
... |
Distribution-specific arguments for the fitting procedure |
.start_with_default |
Before directly optimising the likelihood, use an optimised algorithm for finding better starting values? |
object |
same as parameter |
Details
For Erlang mixture distributions and for Mixture distributions, an EM-Algorithm is instead used to improve stability.
fit()
and fit_dist()
will chose an optimisation method optimized for the specific distribution given.
fit_dist_direct()
can be used to force direct maximisation of the likelihood.
Value
A list with at least the elements
-
params
the fitted parameters in the same structure asinit
. -
logLik
the final log-likelihood
Additional information may be provided depending on dist
.
See Also
Other distribution fitting functions:
fit_blended()
,
fit_erlang_mixture()
,
fit_mixture()
Other distribution fitting functions:
fit_blended()
,
fit_erlang_mixture()
,
fit_mixture()
Examples
x <- rexp(100)
lambda_hat <- 1 / mean(x)
lambda_hat2 <- fit_dist(dist_exponential(), x)$params$rate
identical(lambda_hat, lambda_hat2)
dist <- dist_mixture(list(dist_normal(), dist_translate(dist_exponential(), offset = 6)))
params <- list(
dists = list(list(mean = 5, sd = 1), list(dist = list(rate = 1))), probs = list(0.95, 0.05)
)
set.seed(2000)
u <- runif(100, 10, 20)
x <- dist$sample(100, with_params = params)
obs <- trunc_obs(x = x[x <= u], tmin = -Inf, tmax = u[x <= u])
default_fit <- fit_dist(dist, obs)
direct_fit <- fit_dist_direct(dist, obs)
# NB: direct optimisation steps with pre-run take a few seconds
direct_fit_init <- fit_dist_direct(dist, obs, start = default_fit$params)
direct_fit_auto_init <- fit_dist_direct(dist, obs, .start_with_default = TRUE)
stopifnot(direct_fit_init$logLik == direct_fit_auto_init$logLik)
c(default_fit$logLik, direct_fit$logLik, direct_fit_init$logLik)