as_params | Convert TensorFlow tensors to distribution parameters recursively |
as_trunc_obs | Define a set of truncated observations |
blended_transition | Transition functions for blended distributions |
blended_transition_inv | Transition functions for blended distributions |
callback_adaptive_lr | Keras Callback for adaptive learning rate with weight restoration |
callback_debug_dist_gradients | Callback to monitor likelihood gradient components |
dgpd | The Generalized Pareto Distribution (GPD) |
Distribution | Base class for Distributions |
dist_bdegp | Construct a BDEGP-Family |
dist_beta | Beta Distribution |
dist_binomial | Binomial Distribution |
dist_blended | Blended distribution |
dist_dirac | Dirac (degenerate point) Distribution |
dist_discrete | Discrete Distribution |
dist_empirical | Empirical distribution |
dist_erlangmix | Erlang Mixture distribution |
dist_exponential | Exponential distribution |
dist_gamma | Gamma distribution |
dist_genpareto | Generalized Pareto Distribution |
dist_genpareto1 | Generalized Pareto Distribution |
dist_lognormal | Log Normal distribution |
dist_mixture | Mixture distribution |
dist_negbinomial | Negative binomial Distribution |
dist_normal | Normal distribution |
dist_pareto | Pareto Distribution |
dist_poisson | Poisson Distribution |
dist_translate | Tranlsated distribution |
dist_trunc | Truncated distribution |
dist_uniform | Uniform distribution |
dist_weibull | Weibull Distribution |
dpareto | The Pareto Distribution |
dsoftmax | Soft-Max function |
fit.Distribution | Fit a general distribution to observations |
fit.reservr_keras_model | Fit a neural network based distribution model to data |
fit_blended | Fit a Blended mixture using an ECME-Algorithm |
fit_dist | Fit a general distribution to observations |
fit_dist_direct | Fit a general distribution to observations |
fit_dist_start | Find starting values for distribution parameters |
fit_dist_start.MixtureDistribution | Find starting values for distribution parameters |
fit_erlang_mixture | Fit an Erlang mixture using an ECME-Algorithm |
fit_mixture | Fit a generic mixture using an ECME-Algorithm |
flatten_bounds | Flatten / Inflate parameter lists / vectors |
flatten_params | Flatten / Inflate parameter lists / vectors |
flatten_params_matrix | Flatten / Inflate parameter lists / vectors |
GenPareto | The Generalized Pareto Distribution (GPD) |
inflate_params | Flatten / Inflate parameter lists / vectors |
integrate_gk | Adaptive Gauss-Kronrod Quadrature for multiple limits |
interval | Intervals |
interval-operations | Convex union and intersection of intervals |
interval_intersection | Convex union and intersection of intervals |
interval_union | Convex union and intersection of intervals |
is.Distribution | Test if object is a Distribution |
is.Interval | Intervals |
k_matrix | Cast to a TensorFlow matrix |
Pareto | The Pareto Distribution |
pgpd | The Generalized Pareto Distribution (GPD) |
plot_distributions | Plot several distributions |
ppareto | The Pareto Distribution |
predict.reservr_keras_model | Predict individual distribution parameters |
prob_report | Determine probability of reporting under a Poisson arrival Process |
qgpd | The Generalized Pareto Distribution (GPD) |
qpareto | The Pareto Distribution |
quantile.Distribution | Quantiles of Distributions |
repdel_obs | Define a set of truncated observations |
rgpd | The Generalized Pareto Distribution (GPD) |
rpareto | The Pareto Distribution |
softmax | Soft-Max function |
tf_compile_model | Compile a Keras model for truncated data under dist |
tf_initialise_model | Initialise model weights to a global parameter fit |
truncate_claims | Truncate claims data subject to reporting delay |
truncate_obs | Define a set of truncated observations |
trunc_obs | Define a set of truncated observations |
weighted_median | Compute weighted quantiles |
weighted_moments | Compute weighted moments |
weighted_quantile | Compute weighted quantiles |
weighted_tabulate | Compute weighted tabulations |