| createNode {reservoirnet} | R Documentation | 
Function to create some node
Description
Function to create some node
Usage
createNode(
  nodeType = c("Ridge"),
  units = NULL,
  lr = 1,
  sr = NULL,
  otputDim = NULL,
  inputDim = NULL,
  name = NULL,
  ridge = 0,
  inputBias = TRUE,
  input_scaling = TRUE,
  input_connectivity = 0.1,
  rc_connectivity = 0.1,
  activation = "tanh",
  dtype = "float64",
  seed = NULL,
  ...
)
Arguments
| nodeType | Type of node. Default is  | 
| units | (int) optional 
Number of reservoir units. If None, the number of units will be infered from
the  | 
| lr | (float) default to 1.0
Neurons leak rate. Must be in :math: | 
| sr | (float) optional Spectral radius of recurrent weight matrix. | 
| otputDim | Output dimension of the Node. Dimension of its state. | 
| inputDim | Input dimension of the Node. | 
| name | Name of the Node. It must be a unique identifier. | 
| ridge | float, default to  | 
| inputBias | bool, default to  | 
| input_scaling | float or array-like of shapes (features), default to  | 
| input_connectivity | float, default to 0.1. Connectivity of input neurons, i.e. ratio of input neurons connected to reservoir neurons. Must be between 0 and 1. | 
| rc_connectivity | float, default to 0.1. Connectivity of recurrent weight matrix, i.e. ratio of reservoir neurons connected to other reservoir neurons, including themselves. Must be between 0 and 1. | 
| activation | str 'tanh'. Reservoir units activation function. Should be a activationsfunc function name ('tanh', 'identity', 'sigmoid', 'relu', 'softmax', 'softplus'). | 
| dtype | Numerical type for node parameters | 
| seed | set random seed | 
| ... | Others params | 
Value
A node generated by reservoirpy python module.
Examples
if(interactive()){
readout <- reservoirnet::createNode("Ridge")
}