calcCliffdTestStatistics {reproducer} | R Documentation |
calcCliffdTestStatistics
Description
This function is a helper function for meta-analysis of experiments using Cliff's d as an effect size. It returns the 100*(1-alpha/2)
Usage
calcCliffdTestStatistics(
d.value,
d.variance,
d.df = 0,
alpha = 0.05,
alternative = "two.sided"
)
Arguments
d.value |
The overall estimate of Cliff's d from a group of effect sizes to be meta-analysed |
d.variance |
The estimate of the variance of the overall estimate of Cliff's d |
d.df |
The total degrees of freedom for the set of effect sizes. If d.df>0, the pvalues and significance test use the t-distribution probability values. If d.df=0 (default) the pvalues and significance test use the normal distribution probability values. The confidence intervals are always based on the normal probability values. |
alpha |
The significance level used to control the significance tests and calculation of confidence limits (default 0.05). |
alternative |
Specifies the type of significance test and can take the values "two.sided", "less" or "greater" (default "two.sided"). |
Value
d.tvalue The value of the t-statistic
d.pvalue The p-value of the t-test if the parameter d.df>0, or the normal probability value if d.df=0
d.ci.lower The lower 100*(1-alpha/2)
d.ci.upper The upper 100*(1-alpha/2)
d.sig The significance of the statistical test of the d.tvalue return value at the alpha level for one sided tests and aplha/2 for two sided tests as specified by the input parameter alternative
Author(s)
Barbara Kitchenham and Lech Madeyski
Examples
aveCliffd=mean(c(0.84,0.2,-0.04,0.44,0.76))
aveCliffdvar=sum(c(0.04,0.18,0.21,0.15,0.06))/25
df=45
calcCliffdTestStatistics(d.value=aveCliffd,d.variance=aveCliffdvar,d.df=df)
# A tibble: 1 x 5
# d.tvalue d.pvalue d.ci.lower d.ci.upper d.sig
# <dbl> <dbl> <dbl> <dbl> <lgl>
# 1 2.75 0.00855 0.0923 0.692 TRUE