PHatonesidedTestStatistics {reproducer} | R Documentation |
PHatonesidedTestStatistics
Description
This function is a helper function for meta-analysis of experiments using PHat as an effect size. It returns the 100*(1-alpha)
Usage
PHatonesidedTestStatistics(
effectsize,
effectsize.variance,
effectsize.df = 0,
alpha = 0.05,
alternative = "greater"
)
Arguments
effectsize |
The overall estimate of the centralized PHat (i.e. Phat-0.5) from a group of effect sizes to be meta-analysed |
effectsize.variance |
The estimate of the variance of the overall estimate ofPHat |
effectsize.df |
The total degrees of freedom for the set of effect sizes. If effectsize.df>0, the confidence intervals, pvalues and significance test use the t-distribution probability values. If effectsize.df=0 (default), the confidence intervals, the pvalues and significance test use the normal distribution probability values. |
alpha |
The significance level (default 0.05) used to control the significance tests and calculation of confidence limits. |
alternative |
Specifies the type of significance test and can take the values "less" or "greater" (default). |
Value
ES.test The value of the t-statistic
ES.pvalue The p-value of the two-sided t-test if the parameter d.df>0, or the normal probability value if d.df=0
ES.sig The significance of the statistical test of the d.tvalue return value at the alpha level for one sided tests and aplha/2 for two sided tests as specified by the input parameter alternative.
ES.ci.lower The lower 100*(1-alpha/2)
ES.ci.upper The upper 100*(1-alpha/2)
Author(s)
Barbara Kitchenham and Lech Madeyski
Examples
PHatES=mean(c(0.92,0.6,0.48,0.72,0.88))-0.5
PHatESvar=sum(c(0.01,0.04,0.05,0.04,0.01))/25
PHatdf=sum(c(6.63,6.63,5.08,5.61,8))
#PHatonesidedTestStatistics(effectsize=PHatES,effectsize.variance=PHatESvar,effectsize.df=PHatdf)
# A tibble: 1 x 5
# ES.test ES.pvalue ES.sig ES.ci.lower ES.ci.upper
# <dbl> <dbl> <lgl> <dbl> <dbl>
#1 2.84 0.00389 TRUE 0.0888 0.351
#PHatonesidedTestStatistics(effectsize=PHatES,effectsize.variance=PHatESvar,effectsize.df=0,
# alternative="less")
# A tibble: 1 x 5
# ES.test ES.pvalue ES.sig ES.ci.lower ES.ci.upper
# <dbl> <dbl> <lgl> <dbl> <dbl>
#1 2.84 0.998 FALSE 0.0926 0.347