xmed {regsem} | R Documentation |
Function to performed exploratory mediation with continuous and categorical variables
Description
Function to performed exploratory mediation with continuous and categorical variables
Usage
xmed(
data,
iv,
mediators,
dv,
covariates = NULL,
type = "lasso",
nfolds = 10,
show.lambda = F,
epsilon = 0.001,
seed = NULL
)
Arguments
data |
Name of the dataset |
iv |
Name (or vector of names) of independent variable(s) |
mediators |
Name of mediators |
dv |
Name of dependent variable |
covariates |
Name of covariates to be included in model. |
type |
What type of penalty. Options include lasso, ridge, and enet. |
nfolds |
Number of cross-validation folds. |
show.lambda |
Displays lambda values in output |
epsilon |
Threshold for determining whether effect is 0 or not. |
seed |
Set seed to control CV results |
Value
Coefficients from best fitting model
Examples
# example
library(ISLR)
College1 = College[which(College$Private=="Yes"),]
Data = data.frame(scale(College1[c("Grad.Rate","Accept","Outstate","Room.Board","Books","Expend")]))
Data$Grad.Rate <- ifelse(Data$Grad.Rate > 0,1,0)
Data$Grad.Rate <- as.factor(Data$Grad.Rate)
#lavaan model with all mediators
model1 <-
' # direct effect (c_prime)
Grad.Rate ~ c_prime*Accept
# mediators
Outstate ~ a1*Accept
Room.Board ~ a2*Accept
Books ~ a3*Accept
Expend ~ a6*Accept
Grad.Rate ~ b1*Outstate + b2*Room.Board + b3*Books + b6*Expend
# indirect effects (a*b)
a1b1 := a1*b1
a2b2 := a2*b2
a3b3 := a3*b3
a6b6 := a6*b6
# total effect (c)
c := c_prime + (a1*b1) + (a2*b2) + (a3*b3) + (a6*b6)
'
#p-value approach using delta method standard errors
fit.delta = sem(model1,data=Data,fixed.x=TRUE,ordered="Grad.Rate")
summary(fit.delta)
#xmed()
iv <- "Accept"
dv <- "Grad.Rate"
mediators <- c("Outstate","Room.Board","Books","Expend")
out <- xmed(Data,iv,mediators,dv)
out
[Package regsem version 1.9.5 Index]