plot.fosr.vs {refund} | R Documentation |
Plot for Function-on Scalar Regression with variable selection
Description
Given a "fosr.vs
" object, produces a figure of estimated coefficient functions.
Usage
## S3 method for class 'fosr.vs'
plot(x, ...)
Arguments
x |
an object of class " |
... |
additional arguments. |
Value
a figure of estimated coefficient functions.
Author(s)
Yakuan Chen yc2641@cumc.columbia.edu
See Also
Examples
## Not run:
I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)
beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2
psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)
set.seed(100)
X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))
fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)
Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error
data = as.data.frame(X)
data$Y = Yi.obs
fit.mcp = fosr.vs(Y~., data = data[1:80,], method="grMCP")
plot(fit.mcp)
## End(Not run)
[Package refund version 0.1-35 Index]