inddiv {rdiversity} | R Documentation |
Calculate individual-level diversity
Description
Generic function for calculating individual-level diversity.
Usage
inddiv(data, qs)
## S4 method for signature 'powermean'
inddiv(data, qs)
## S4 method for signature 'relativeentropy'
inddiv(data, qs)
## S4 method for signature 'metacommunity'
inddiv(data, qs)
Arguments
data |
|
qs |
|
Details
data
may be input as three different classes:
power_mean
: calculates raw and normalised subcommunity alpha, rho or gamma diversity by taking the powermean of diversity componentsrelativeentropy
: calculates raw or normalised subcommunity beta diversity by taking the relative entropy of diversity componentsmetacommunity
: calculates all subcommunity measures of diversity
Value
inddiv()
returns a standard output of class rdiv
References
Reeve, R., T. Leinster, C. Cobbold, J. Thompson, N. Brummitt, S. Mitchell, and L. Matthews. 2016. How to partition diversity. arXiv 1404.6520v3:1–9.
See Also
subdiv
for subcommunity-level diversity and
metadiv
for metacommunity-level diversity.
Examples
# Define metacommunity
pop <- cbind.data.frame(A = c(1,1), B = c(2,0), C = c(3,1))
row.names(pop) <- paste0("sp", 1:2)
pop <- pop/sum(pop)
meta <- metacommunity(pop)
# Calculate subcommunity gamma diversity (takes the power mean)
g <- raw_gamma(meta)
inddiv(g, 0:2)
# Calculate subcommunity beta diversity (takes the relative entropy)
b <- raw_beta(meta)
inddiv(b, 0:2)
# Calculate all measures of individual diversity
inddiv(meta, 0:2)