A C D E F G H I L M P Q R S T V
add_class | Add a class |
adjust_trajectories | Adjust trajectories due to the intercurrent event (ICE) |
adjust_trajectories_single | Adjust trajectory of a subject's outcome due to the intercurrent event (ICE) |
analyse | Analyse Multiple Imputed Datasets |
ancova | Analysis of Covariance |
ancova_single | Implements an Analysis of Covariance (ANCOVA) |
antidepressant_data | Antidepressant trial data |
apply_delta | Applies delta adjustment |
as.data.frame.pool | Pool analysis results obtained from the imputed datasets |
assert_variables_exist | Assert that all variables exist within a dataset |
as_analysis | Construct an 'analysis' object |
as_ascii_table | as_ascii_table |
as_class | Set Class |
as_cropped_char | as_cropped_char |
as_dataframe | Convert object to dataframe |
as_draws | Creates a 'draws' object |
as_imputation | Create an imputation object |
as_indices | Convert indicator to index |
as_mmrm_df | Creates a "MMRM" ready dataset |
as_mmrm_formula | Create MMRM formula |
as_model_df | Expand 'data.frame' into a design matrix |
as_simple_formula | Creates a simple formula object from a string |
as_stan_array | As array |
as_strata | Create vector of Stratas |
as_vcov | Create simulated datasets |
char2fct | Convert character variables to factor |
check_ESS | Diagnostics of the MCMC based on ESS |
check_hmc_diagn | Diagnostics of the MCMC based on HMC-related measures. |
check_mcmc | Diagnostics of the MCMC |
compute_sigma | Compute covariance matrix for some reference-based methods (JR, CIR) |
convert_to_imputation_list_df | Convert list of 'imputation_list_single()' objects to an 'imputation_list_df()' object (i.e. a list of 'imputation_df()' objects's) |
delta_template | Create a delta 'data.frame' template |
do_not_run | Do not run this function |
draws | Fit the base imputation model and get parameter estimates |
draws.approxbayes | Fit the base imputation model and get parameter estimates |
draws.bayes | Fit the base imputation model and get parameter estimates |
draws.bmlmi | Fit the base imputation model and get parameter estimates |
draws.condmean | Fit the base imputation model and get parameter estimates |
d_lagscale | Calculate delta from a lagged scale coefficient |
encap_get_mmrm_sample | Encapsulate get_mmrm_sample |
eval_mmrm | Evaluate a call to mmrm |
expand | Expand and fill in missing 'data.frame' rows |
expand_locf | Expand and fill in missing 'data.frame' rows |
extract_covariates | Extract Variables from string vector |
extract_data_nmar_as_na | Set to NA outcome values that would be MNAR if they were missing (i.e. which occur after an ICE handled using a reference-based imputation strategy) |
extract_draws | Extract draws from a 'stanfit' object |
extract_imputed_df | Extract imputed dataset |
extract_imputed_dfs | Extract imputed datasets |
extract_params | Extract parameters from a MMRM model |
fill_locf | Expand and fill in missing 'data.frame' rows |
fit_mcmc | Fit the base imputation model using a Bayesian approach |
fit_mmrm | Fit a MMRM model |
generate_data_single | Generate data for a single group |
getStrategies | Get imputation strategies |
get_bootstrap_stack | Creates a stack object populated with bootstrapped samples |
get_cluster | Create cluster |
get_conditional_parameters | Derive conditional multivariate normal parameters |
get_delta_template | Get delta utility variables |
get_draws_mle | Fit the base imputation model on bootstrap samples |
get_ESS | Extract the Effective Sample Size (ESS) from a 'stanfit' object |
get_ests_bmlmi | Von Hippel and Bartlett pooling of BMLMI method |
get_example_data | Simulate a realistic example dataset |
get_jackknife_stack | Creates a stack object populated with jackknife samples |
get_mmrm_sample | Fit MMRM and returns parameter estimates |
get_pattern_groups | Determine patients missingness group |
get_pattern_groups_unique | Get Pattern Summary |
get_pool_components | Expected Pool Components |
get_visit_distribution_parameters | Derive visit distribution parameters |
has_class | Does object have a class ? |
ife | if else |
imputation_df | Create a valid 'imputation_df' object |
imputation_list_df | List of imputations_df |
imputation_list_single | A collection of 'imputation_singles()' grouped by a single subjid ID |
imputation_single | Create a valid 'imputation_single' object |
impute | Create imputed datasets |
impute.condmean | Create imputed datasets |
impute.random | Create imputed datasets |
impute_data_individual | Impute data for a single subject |
impute_internal | Create imputed datasets |
impute_outcome | Sample outcome value |
invert | invert |
invert_indexes | Invert and derive indexes |
is_absent | Is value absent |
is_char_fact | Is character or factor |
is_char_one | Is single character |
is_in_rbmi_development | Is package in development mode? |
is_num_char_fact | Is character, factor or numeric |
locf | Last Observation Carried Forward |
longDataConstructor | R6 Class for Storing / Accessing & Sampling Longitudinal Data |
lsmeans | Least Square Means |
ls_design | Calculate design vector for the lsmeans |
ls_design_equal | Calculate design vector for the lsmeans |
ls_design_proportional | Calculate design vector for the lsmeans |
method | Set the multiple imputation methodology |
method_approxbayes | Set the multiple imputation methodology |
method_bayes | Set the multiple imputation methodology |
method_bmlmi | Set the multiple imputation methodology |
method_condmean | Set the multiple imputation methodology |
parametric_ci | Calculate parametric confidence intervals |
pool | Pool analysis results obtained from the imputed datasets |
pool_bootstrap_normal | Bootstrap Pooling via normal approximation |
pool_bootstrap_percentile | Bootstrap Pooling via Percentiles |
pool_internal | Internal Pool Methods |
pool_internal.bmlmi | Internal Pool Methods |
pool_internal.bootstrap | Internal Pool Methods |
pool_internal.jackknife | Internal Pool Methods |
pool_internal.rubin | Internal Pool Methods |
prepare_stan_data | Prepare input data to run the Stan model |
print.analysis | Print 'analysis' object |
print.draws | Print 'draws' object |
print.imputation | Print 'imputation' object |
print.pool | Pool analysis results obtained from the imputed datasets |
progressLogger | R6 Class for printing current sampling progress |
pval_percentile | P-value of percentile bootstrap |
QR_decomp | QR decomposition |
random_effects_expr | Construct random effects formula |
record | Capture all Output |
recursive_reduce | recursive_reduce |
remove_if_all_missing | Remove subjects from dataset if they have no observed values |
rubin_df | Barnard and Rubin degrees of freedom adjustment |
rubin_rules | Combine estimates using Rubin's rules |
sample_ids | Sample Patient Ids |
sample_list | Create and validate a 'sample_list' object |
sample_mvnorm | Sample random values from the multivariate normal distribution |
sample_single | Create object of 'sample_single' class |
scalerConstructor | R6 Class for scaling (and un-scaling) design matrices |
set_simul_pars | Set simulation parameters of a study group. |
set_vars | Set key variables |
simulate_data | Generate data |
simulate_dropout | Simulate drop-out |
simulate_ice | Simulate intercurrent event |
simulate_test_data | Create simulated datasets |
sort_by | Sort 'data.frame' |
split_dim | Transform array into list of arrays |
split_imputations | Split a flat list of 'imputation_single()' into multiple 'imputation_df()"s by ID |
Stack | R6 Class for a FIFO stack |
strategies | Strategies |
strategy_CIR | Strategies |
strategy_CR | Strategies |
strategy_JR | Strategies |
strategy_LMCF | Strategies |
strategy_MAR | Strategies |
string_pad | string_pad |
str_contains | Does a string contain a substring |
transpose_imputations | Transpose imputations |
transpose_results | Transpose results object |
transpose_samples | Transpose samples |
validate | Generic validation method |
validate.analysis | Validate 'analysis' objects |
validate.draws | Validate 'draws' object |
validate.is_mar | Validate 'is_mar' for a given subject |
validate.ivars | Validate inputs for 'vars' |
validate.references | Validate user supplied references |
validate.sample_list | Validate 'sample_list' object |
validate.sample_single | Validate 'sample_single' object |
validate.simul_pars | Validate a 'simul_pars' object |
validate.stan_data | Validate a 'stan_data' object |
validate_analyse_pars | Validate analysis results |
validate_dataice | Validate a longdata object |
validate_datalong | Validate a longdata object |
validate_datalong_complete | Validate a longdata object |
validate_datalong_notMissing | Validate a longdata object |
validate_datalong_types | Validate a longdata object |
validate_datalong_unifromStrata | Validate a longdata object |
validate_datalong_varExists | Validate a longdata object |
validate_strategies | Validate user specified strategies |