Reference Based Multiple Imputation


[Up] [Top]

Documentation for package ‘rbmi’ version 1.2.6

Help Pages

A C D E F G H I L M P Q R S T V

-- A --

add_class Add a class
adjust_trajectories Adjust trajectories due to the intercurrent event (ICE)
adjust_trajectories_single Adjust trajectory of a subject's outcome due to the intercurrent event (ICE)
analyse Analyse Multiple Imputed Datasets
ancova Analysis of Covariance
ancova_single Implements an Analysis of Covariance (ANCOVA)
antidepressant_data Antidepressant trial data
apply_delta Applies delta adjustment
as.data.frame.pool Pool analysis results obtained from the imputed datasets
assert_variables_exist Assert that all variables exist within a dataset
as_analysis Construct an 'analysis' object
as_ascii_table as_ascii_table
as_class Set Class
as_cropped_char as_cropped_char
as_dataframe Convert object to dataframe
as_draws Creates a 'draws' object
as_imputation Create an imputation object
as_indices Convert indicator to index
as_mmrm_df Creates a "MMRM" ready dataset
as_mmrm_formula Create MMRM formula
as_model_df Expand 'data.frame' into a design matrix
as_simple_formula Creates a simple formula object from a string
as_stan_array As array
as_strata Create vector of Stratas
as_vcov Create simulated datasets

-- C --

char2fct Convert character variables to factor
check_ESS Diagnostics of the MCMC based on ESS
check_hmc_diagn Diagnostics of the MCMC based on HMC-related measures.
check_mcmc Diagnostics of the MCMC
compute_sigma Compute covariance matrix for some reference-based methods (JR, CIR)
convert_to_imputation_list_df Convert list of 'imputation_list_single()' objects to an 'imputation_list_df()' object (i.e. a list of 'imputation_df()' objects's)

-- D --

delta_template Create a delta 'data.frame' template
do_not_run Do not run this function
draws Fit the base imputation model and get parameter estimates
draws.approxbayes Fit the base imputation model and get parameter estimates
draws.bayes Fit the base imputation model and get parameter estimates
draws.bmlmi Fit the base imputation model and get parameter estimates
draws.condmean Fit the base imputation model and get parameter estimates
d_lagscale Calculate delta from a lagged scale coefficient

-- E --

encap_get_mmrm_sample Encapsulate get_mmrm_sample
eval_mmrm Evaluate a call to mmrm
expand Expand and fill in missing 'data.frame' rows
expand_locf Expand and fill in missing 'data.frame' rows
extract_covariates Extract Variables from string vector
extract_data_nmar_as_na Set to NA outcome values that would be MNAR if they were missing (i.e. which occur after an ICE handled using a reference-based imputation strategy)
extract_draws Extract draws from a 'stanfit' object
extract_imputed_df Extract imputed dataset
extract_imputed_dfs Extract imputed datasets
extract_params Extract parameters from a MMRM model

-- F --

fill_locf Expand and fill in missing 'data.frame' rows
fit_mcmc Fit the base imputation model using a Bayesian approach
fit_mmrm Fit a MMRM model

-- G --

generate_data_single Generate data for a single group
getStrategies Get imputation strategies
get_bootstrap_stack Creates a stack object populated with bootstrapped samples
get_cluster Create cluster
get_conditional_parameters Derive conditional multivariate normal parameters
get_delta_template Get delta utility variables
get_draws_mle Fit the base imputation model on bootstrap samples
get_ESS Extract the Effective Sample Size (ESS) from a 'stanfit' object
get_ests_bmlmi Von Hippel and Bartlett pooling of BMLMI method
get_example_data Simulate a realistic example dataset
get_jackknife_stack Creates a stack object populated with jackknife samples
get_mmrm_sample Fit MMRM and returns parameter estimates
get_pattern_groups Determine patients missingness group
get_pattern_groups_unique Get Pattern Summary
get_pool_components Expected Pool Components
get_visit_distribution_parameters Derive visit distribution parameters

-- H --

has_class Does object have a class ?

-- I --

ife if else
imputation_df Create a valid 'imputation_df' object
imputation_list_df List of imputations_df
imputation_list_single A collection of 'imputation_singles()' grouped by a single subjid ID
imputation_single Create a valid 'imputation_single' object
impute Create imputed datasets
impute.condmean Create imputed datasets
impute.random Create imputed datasets
impute_data_individual Impute data for a single subject
impute_internal Create imputed datasets
impute_outcome Sample outcome value
invert invert
invert_indexes Invert and derive indexes
is_absent Is value absent
is_char_fact Is character or factor
is_char_one Is single character
is_in_rbmi_development Is package in development mode?
is_num_char_fact Is character, factor or numeric

-- L --

locf Last Observation Carried Forward
longDataConstructor R6 Class for Storing / Accessing & Sampling Longitudinal Data
lsmeans Least Square Means
ls_design Calculate design vector for the lsmeans
ls_design_equal Calculate design vector for the lsmeans
ls_design_proportional Calculate design vector for the lsmeans

-- M --

method Set the multiple imputation methodology
method_approxbayes Set the multiple imputation methodology
method_bayes Set the multiple imputation methodology
method_bmlmi Set the multiple imputation methodology
method_condmean Set the multiple imputation methodology

-- P --

parametric_ci Calculate parametric confidence intervals
pool Pool analysis results obtained from the imputed datasets
pool_bootstrap_normal Bootstrap Pooling via normal approximation
pool_bootstrap_percentile Bootstrap Pooling via Percentiles
pool_internal Internal Pool Methods
pool_internal.bmlmi Internal Pool Methods
pool_internal.bootstrap Internal Pool Methods
pool_internal.jackknife Internal Pool Methods
pool_internal.rubin Internal Pool Methods
prepare_stan_data Prepare input data to run the Stan model
print.analysis Print 'analysis' object
print.draws Print 'draws' object
print.imputation Print 'imputation' object
print.pool Pool analysis results obtained from the imputed datasets
progressLogger R6 Class for printing current sampling progress
pval_percentile P-value of percentile bootstrap

-- Q --

QR_decomp QR decomposition

-- R --

random_effects_expr Construct random effects formula
record Capture all Output
recursive_reduce recursive_reduce
remove_if_all_missing Remove subjects from dataset if they have no observed values
rubin_df Barnard and Rubin degrees of freedom adjustment
rubin_rules Combine estimates using Rubin's rules

-- S --

sample_ids Sample Patient Ids
sample_list Create and validate a 'sample_list' object
sample_mvnorm Sample random values from the multivariate normal distribution
sample_single Create object of 'sample_single' class
scalerConstructor R6 Class for scaling (and un-scaling) design matrices
set_simul_pars Set simulation parameters of a study group.
set_vars Set key variables
simulate_data Generate data
simulate_dropout Simulate drop-out
simulate_ice Simulate intercurrent event
simulate_test_data Create simulated datasets
sort_by Sort 'data.frame'
split_dim Transform array into list of arrays
split_imputations Split a flat list of 'imputation_single()' into multiple 'imputation_df()"s by ID
Stack R6 Class for a FIFO stack
strategies Strategies
strategy_CIR Strategies
strategy_CR Strategies
strategy_JR Strategies
strategy_LMCF Strategies
strategy_MAR Strategies
string_pad string_pad
str_contains Does a string contain a substring

-- T --

transpose_imputations Transpose imputations
transpose_results Transpose results object
transpose_samples Transpose samples

-- V --

validate Generic validation method
validate.analysis Validate 'analysis' objects
validate.draws Validate 'draws' object
validate.is_mar Validate 'is_mar' for a given subject
validate.ivars Validate inputs for 'vars'
validate.references Validate user supplied references
validate.sample_list Validate 'sample_list' object
validate.sample_single Validate 'sample_single' object
validate.simul_pars Validate a 'simul_pars' object
validate.stan_data Validate a 'stan_data' object
validate_analyse_pars Validate analysis results
validate_dataice Validate a longdata object
validate_datalong Validate a longdata object
validate_datalong_complete Validate a longdata object
validate_datalong_notMissing Validate a longdata object
validate_datalong_types Validate a longdata object
validate_datalong_unifromStrata Validate a longdata object
validate_datalong_varExists Validate a longdata object
validate_strategies Validate user specified strategies