variogram.intrinsic.spde {rSPDE} | R Documentation |
Variogram of intrinsic SPDE model
Description
Variogram \gamma(s_0,s)
of intrinsic SPDE
model
(-\Delta)^{\beta/2}(\kappa^2-\Delta)^{\alpha/2} (\tau u) = \mathcal{W}
with Neumann boundary conditions and a mean-zero constraint on a
square [0,L]^d
for d=1
or d=2
.
Usage
variogram.intrinsic.spde(
s0 = NULL,
s = NULL,
kappa = NULL,
alpha = NULL,
beta = NULL,
tau = 1,
L = NULL,
N = 100,
d = NULL
)
Arguments
s0 |
The location where the variogram should be evaluated, either a double for 1d or a vector for 2d |
s |
A vector (in 1d) or matrix (in 2d) with all locations where the variogram is computed |
kappa |
Range parameter. |
alpha |
Smoothness parameter. |
beta |
Smoothness parameter. |
tau |
Precision parameter. |
L |
The side length of the square domain. |
N |
The number of terms in the Karhunen-Loeve expansion. |
d |
The dimension (1 or 2). |
Details
The variogram is computed based on a Karhunen-Loeve expansion of the covariance function.
See Also
Examples
if (requireNamespace("RSpectra", quietly = TRUE)){
x <- seq(from = 0, to = 10, length.out = 201)
beta <- 1
alpha <- 1
kappa <- 1
op <- intrinsic.matern.operators(kappa = kappa, tau = 1, alpha = alpha,
beta = beta, loc_mesh = x, d=1)
# Compute and plot the variogram of the model
Sigma <- op$A %*% solve(op$Q,t(op$A))
One <- rep(1, times = ncol(Sigma))
D <- diag(Sigma)
Gamma <- 0.5*(One %*% t(D) + D %*% t(One) - 2 * Sigma)
k <- 100
plot(x, Gamma[k, ], type = "l")
lines(x,
variogram.intrinsic.spde(x[k], x, kappa, alpha, beta, L = 10, d = 1),
col=2, lty = 2)
}
[Package rSPDE version 2.3.3 Index]