folded.matern.covariance.1d {rSPDE} | R Documentation |
The 1d folded Matern covariance function
Description
folded.matern.covariance.1d
evaluates the 1d
folded Matern covariance function over an interval [0,L]
.
Usage
folded.matern.covariance.1d(
h,
m,
kappa,
nu,
sigma,
L = 1,
N = 10,
boundary = c("neumann", "dirichlet", "periodic")
)
Arguments
h , m |
Vectors of arguments of the covariance function. |
kappa |
Range parameter. |
nu |
Shape parameter. |
sigma |
Standard deviation. |
L |
The upper bound of the interval |
N |
The truncation parameter. |
boundary |
The boundary condition. The possible conditions
are |
Details
folded.matern.covariance.1d
evaluates the 1d folded Matern
covariance function over an interval [0,L]
under different
boundary conditions. For periodic boundary conditions
C_{\mathcal{P}}(h,m) = \sum_{k=-\infty}^{\infty} (C(h-m+2kL),
for Neumann boundary conditions
C_{\mathcal{N}}(h,m) = \sum_{k=-\infty}^{\infty}
(C(h-m+2kL)+C(h+m+2kL)),
and for Dirichlet boundary conditions:
C_{\mathcal{D}}(h,m) = \sum_{k=-\infty}^{\infty}
(C(h-m+2kL)-C(h+m+2kL)),
where C(\cdot)
is the Matern covariance function:
C(h) = \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)}(\kappa h)^\nu
K_\nu(\kappa h).
We consider the truncation:
C_{{\mathcal{P}},N}(h,m) = \sum_{k=-N}^{N} C(h-m+2kL),
C_{\mathcal{N},N}(h,m) = \sum_{k=-\infty}^{\infty}
(C(h-m+2kL)+C(h+m+2kL)),
and
C_{\mathcal{D},N}(h,m) = \sum_{k=-N}^{N}
(C(h-m+2kL)-C(h+m+2kL)).
Value
A matrix with the corresponding covariance values.
Examples
x <- seq(from = 0, to = 1, length.out = 101)
plot(x, folded.matern.covariance.1d(rep(0.5, length(x)), x,
kappa = 10, nu = 1 / 5, sigma = 1),
type = "l", ylab = "C(h)", xlab = "h"
)