MVP.MLM {rMVP} | R Documentation |
To perform GWAS with GLM and MLM model and get the P value of SNPs
Description
Build date: Aug 30, 2016 Last update: Aug 30, 2016
Usage
MVP.MLM(
phe,
geno,
K = NULL,
eigenK = NULL,
CV = NULL,
REML = NULL,
cpu = 1,
vc.method = c("BRENT", "EMMA", "HE"),
verbose = TRUE
)
Arguments
phe |
phenotype, n * 2 matrix |
geno |
genotype, m * n, m is marker size, n is population size |
K |
Kinship, Covariance matrix(n * n) for random effects; must be positive semi-definite |
eigenK |
list of eigen Kinship |
CV |
covariates |
REML |
a list that contains ve and vg |
cpu |
number of cpus used for parallel computation |
vc.method |
the methods for estimating variance component("emma" or "he" or "brent") |
verbose |
whether to print detail. |
Value
results: a m * 2 matrix, the first column is the SNP effect, the second column is the P values
Author(s)
Lilin Yin and Xiaolei Liu
Examples
phePath <- system.file("extdata", "07_other", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
idx <- !is.na(phenotype[, 2])
phenotype <- phenotype[idx, ]
print(dim(phenotype))
genoPath <- system.file("extdata", "06_mvp-impute", "mvp.imp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
genotype <- deepcopy(genotype, cols=idx)
print(dim(genotype))
K <- MVP.K.VanRaden(genotype, cpu=1)
mlm <- MVP.MLM(phe=phenotype, geno=genotype, K=K, cpu=1)
str(mlm)
[Package rMVP version 1.0.8 Index]