| MVP.MLM {rMVP} | R Documentation | 
To perform GWAS with GLM and MLM model and get the P value of SNPs
Description
Build date: Aug 30, 2016 Last update: Aug 30, 2016
Usage
MVP.MLM(
  phe,
  geno,
  K = NULL,
  eigenK = NULL,
  CV = NULL,
  REML = NULL,
  cpu = 1,
  vc.method = c("BRENT", "EMMA", "HE"),
  verbose = TRUE
)
Arguments
| phe | phenotype, n * 2 matrix | 
| geno | genotype, m * n, m is marker size, n is population size | 
| K | Kinship, Covariance matrix(n * n) for random effects; must be positive semi-definite | 
| eigenK | list of eigen Kinship | 
| CV | covariates | 
| REML | a list that contains ve and vg | 
| cpu | number of cpus used for parallel computation | 
| vc.method | the methods for estimating variance component("emma" or "he" or "brent") | 
| verbose | whether to print detail. | 
Value
results: a m * 2 matrix, the first column is the SNP effect, the second column is the P values
Author(s)
Lilin Yin and Xiaolei Liu
Examples
phePath <- system.file("extdata", "07_other", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
idx <- !is.na(phenotype[, 2])
phenotype <- phenotype[idx, ]
print(dim(phenotype))
genoPath <- system.file("extdata", "06_mvp-impute", "mvp.imp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
genotype <- deepcopy(genotype, cols=idx)
print(dim(genotype))
K <- MVP.K.VanRaden(genotype, cpu=1)
mlm <- MVP.MLM(phe=phenotype, geno=genotype, K=K, cpu=1)
str(mlm)
[Package rMVP version 1.0.8 Index]