MVP.GLM {rMVP} | R Documentation |
To perform GWAS with GLM and MLM model and get the P value of SNPs
Description
Build date: Aug 30, 2016 Last update: May 25, 2017
Usage
MVP.GLM(phe, geno, CV = NULL, cpu = 1, verbose = TRUE)
Arguments
phe |
phenotype, n * 2 matrix |
geno |
Genotype in numeric format, pure 0, 1, 2 matrix; m * n, m is marker size, n is population size |
CV |
Covariance, design matrix(n * x) for the fixed effects |
cpu |
number of cpus used for parallel computation |
verbose |
whether to print detail. |
Value
m * 2 matrix, the first column is the SNP effect, the second column is the P values
Author(s)
Lilin Yin and Xiaolei Liu
Examples
phePath <- system.file("extdata", "07_other", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
idx <- !is.na(phenotype[, 2])
phenotype <- phenotype[idx, ]
print(dim(phenotype))
genoPath <- system.file("extdata", "06_mvp-impute", "mvp.imp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
genotype <- deepcopy(genotype, cols=idx)
print(dim(genotype))
glm <- MVP.GLM(phe=phenotype, geno=genotype, cpu=1)
str(glm)
[Package rMVP version 1.0.8 Index]