| MVP.EMMA.Vg.Ve {rMVP} | R Documentation | 
Estimate variance components using EMMA
Description
Build date: August 30, 2016 Last update: January 27, 2017
Usage
MVP.EMMA.Vg.Ve(y, X, K, ngrids = 100, llim = -10, ulim = 10, esp = 1e-10)
Arguments
| y | phenotype, n * 2 | 
| X | covariate matrix, the first column is 1s | 
| K | Kinship matrix | 
| ngrids | parameters for estimating vg and ve | 
| llim | parameters for estimating vg and ve | 
| ulim | parameters for estimating vg and ve | 
| esp | parameters for estimating vg and ve | 
Value
Output: REML - maximum log likelihood Output: delta - exp(root) Output: ve - residual variance Output: vg - genetic variance
Author(s)
EMMA (Kang et. al. Genetics, 2008), Modified only for speed up by Xiaolei Liu and Lilin Yin
Examples
phePath <- system.file("extdata", "07_other", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
print(dim(phenotype))
genoPath <- system.file("extdata", "06_mvp-impute", "mvp.imp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))
K <- MVP.K.VanRaden(genotype, cpu=1)
vc <- MVP.EMMA.Vg.Ve(y=phenotype[,2], X=matrix(1, nrow(phenotype)), K=K)
print(vc)
[Package rMVP version 1.0.8 Index]