profile_qtl {qtlpoly} | R Documentation |
QTL profiling
Description
Generates the score-based genome-wide profile conditional to the selected QTL.
Usage
profile_qtl(
data,
model,
d.sint = 1.5,
polygenes = FALSE,
n.clusters = NULL,
plot = NULL,
verbose = TRUE
)
## S3 method for class 'qtlpoly.profile'
print(x, pheno.col = NULL, sint = NULL, ...)
Arguments
data |
an object of class |
model |
an object of class |
d.sint |
a |
polygenes |
if |
n.clusters |
number of parallel processes to spawn. |
plot |
a suffix for the file's name containing plots of every QTL profiling round, e.g. "profile" (default); if |
verbose |
if |
x |
an object of class |
pheno.col |
a numeric vector with the phenotype column numbers to be plotted; if |
sint |
whether |
... |
currently ignored |
Value
An object of class qtlpoly.profile
which contains a list of results
for each trait with the following components:
pheno.col |
a phenotype column number. |
stat |
a vector containing values from score statistics. |
pval |
a vector containing p-values from score statistics. |
qtls |
a data frame with information from the mapped QTL. |
lower |
a data frame with information from the lower support interval of mapped QTL. |
upper |
a data frame with information from the upper support interval of mapped QTL. |
Author(s)
Guilherme da Silva Pereira, gdasilv@ncsu.edu
References
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. doi:10.1534/genetics.120.303080.
Qu L, Guennel T, Marshall SL (2013) Linear score tests for variance components in linear mixed models and applications to genetic association studies. Biometrics 69 (4): 883–92.
Examples
# Estimate conditional probabilities using mappoly package
library(mappoly)
library(qtlpoly)
genoprob4x = lapply(maps4x[c(5)], calc_genoprob)
data = read_data(ploidy = 4, geno.prob = genoprob4x, pheno = pheno4x, step = 1)
# Build null model
null.mod = null_model(data, pheno.col = 1, n.clusters = 1)
# Perform forward search
search.mod = search_qtl(data = data, model = null.mod,
w.size = 15, sig.fwd = 0.01, n.clusters = 1)
# Optimize model
optimize.mod = optimize_qtl(data = data, model = search.mod, sig.bwd = 0.0001, n.clusters = 1)
# Profile model
profile.mod = profile_qtl(data = data, model = optimize.mod, d.sint = 1.5, n.clusters = 1)