| plot_profile {qtlpoly} | R Documentation | 
Logarithm of P-value (LOP) profile plots
Description
Plots profiled logarithm of score-based P-values (LOP) from individual or combined traits.
Usage
plot_profile(
  data = data,
  model = model,
  pheno.col = NULL,
  sup.int = FALSE,
  main = NULL,
  legend = "bottom",
  ylim = NULL,
  grid = FALSE
)
Arguments
data | 
 an object of class   | 
model | 
 an object of class   | 
pheno.col | 
 a numeric vector with the phenotype column numbers to be plotted; if   | 
sup.int | 
 if   | 
main | 
 a character string with the main title; if   | 
legend | 
 legend position (either "bottom", "top", "left" or "right"); if   | 
ylim | 
 a numeric value pair supplying the limits of y-axis, e.g. c(0,10); if   | 
grid | 
 if   | 
Value
A ggplot2 with the LOP profiles for each trait.
Author(s)
Guilherme da Silva Pereira, gdasilv@ncsu.edu
References
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. doi:10.1534/genetics.120.303080.
See Also
Examples
  
  # Estimate conditional probabilities using mappoly package
  library(mappoly)
  library(qtlpoly)
  genoprob4x = lapply(maps4x[c(5)], calc_genoprob)
  data = read_data(ploidy = 4, geno.prob = genoprob4x, pheno = pheno4x, step = 1)
  # Search for QTL
  remim.mod = remim(data = data, pheno.col = 1, w.size = 15, sig.fwd = 0.0011493379,
sig.bwd = 0.0002284465, d.sint = 1.5, n.clusters = 1)
  # Plot profile
  plot_profile(data = data, model = remim.mod, grid = FALSE)