null_model2 {qtlpoly} | R Documentation |
Null model
Description
Creates a null model (with no QTL) for each trait.
Usage
null_model2(
data,
offset.data = NULL,
pheno.col = NULL,
n.clusters = NULL,
plot = NULL,
verbose = TRUE
)
Arguments
data |
an object of class |
offset.data |
a data frame with the same dimensions of |
pheno.col |
a numeric vector with the phenotype columns to be analyzed; if |
n.clusters |
number of parallel processes to spawn. |
plot |
a suffix for the file's name containing simple plots of every QTL search round, e.g. "null" (default); if |
verbose |
if |
Value
An object of class qtlpoly.null
which contains a list of results
for each trait with the following components:
pheno.col |
a phenotype column number. |
stat |
a vector containing values from score statistics. |
pval |
a vector containing p-values from score statistics. |
qtls |
a data frame with information from the mapped QTL ( |
Author(s)
Guilherme da Silva Pereira, gdasilv@ncsu.edu, Gabriel de Siqueira Gesteira, gdesiqu@ncsu.edu
References
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. doi:10.1534/genetics.120.303080.
Qu L, Guennel T, Marshall SL (2013) Linear score tests for variance components in linear mixed models and applications to genetic association studies. Biometrics 69 (4): 883–92.
See Also
Examples
# Estimate conditional probabilities using mappoly package
library(mappoly)
library(qtlpoly)
genoprob4x = lapply(maps4x[c(5)], calc_genoprob)
data = read_data(ploidy = 4, geno.prob = genoprob4x, pheno = pheno4x, step = 1)
# Build null models
null.mod = null_model(data = data, pheno.col = 1, n.clusters = 1)