summat2D {qtlc} | R Documentation |
Summarize matrices
Description
The function summarize matrices areas of the located spot matrices.
Usage
summat2D(object)
Arguments
object |
S3 object of working TLC |
Value
Returns S3 object with new values object$spot_sums
.
Author(s)
Ivan D. Pavicevic, ivanp84@gmail.com
Examples
# This interactive example shows the most
# common usage of the qtlc library.
fname01 <- system.file("extdata", "test025to100sp.tiff", package="qtlc")
testTLC <- createTLC(fname01, RGB=FALSE)
print(testTLC)
# now using mouse select the spots with testTLC <- spot2D(testTLC)
# but, for automatic tests, we'll imitate that step...
testTLC$spots$x <- c(40.93354, 83.18687, 121.59899, 160.01111, 203.54485,
239.39616, 280.36909, 320.06161, 362.31494, 399.44666,
439.13919, 480.11211, 518.52423, 559.49716, 599.18969)
testTLC$spots$y <- c(198.3160, 198.3160, 199.2833, 198.3160, 198.3160,
198.3160, 198.3160, 198.3160, 197.3487, 198.3160,
199.2833, 198.3160, 199.2833, 199.2833, 199.2833)
# and now the select2D selects 30x30 pixels areas around spots
testTLC <- select2D(testTLC, 30, 30)
# forming spots matrices
testTLC <- matrices2D(testTLC)
# and finaly sumarizing spots areas
testTLC <- summat2D(testTLC)
#eventually we'll examine the linear model
C <- rep(c(0.25, 1, 6.25, 25, 100), each=3) #imaginative concentrations
#now creates data frame with values
testTLC.df <- data.frame(C, testTLC$spot_sums)
names(testTLC.df) <- c("Concentration", "Signal")
# now the linear model
testTLC.lm <- with(testTLC.df, lm(Signal ~ Concentration))
# and finaly the plot
plot(testTLC.df)
abline(testTLC.lm)
summary(testTLC.lm)
[Package qtlc version 1.0 Index]