ggplot_snpasso {qtl2ggplot} | R Documentation |
Plot SNP associations
Description
Plot SNP associations, with possible expansion from distinct snps to all snps.
Usage
ggplot_snpasso(
scan1output,
snpinfo,
genes = NULL,
lodcolumn = 1,
show_all_snps = TRUE,
drop_hilit = NA,
col_hilit = "violetred",
col = "darkslateblue",
ylim = NULL,
gap = 25,
minlod = 0,
bgcolor = "gray90",
altbgcolor = "gray85",
...
)
Arguments
scan1output |
Output of |
snpinfo |
Data frame with SNP information with the following
columns (the last three are generally derived from with
|
genes |
Optional data frame containing gene information for the region, with columns 'start' and 'stop' in Mbp, 'strand' (as '"-"', '"+"', or 'NA'), and 'Name'. If included, a two-panel plot is produced, with SNP associations above and gene locations below. |
lodcolumn |
LOD score column to plot (a numeric index, or a character string for a column name). One or more value(s) allowed. |
show_all_snps |
If TRUE, expand to show all SNPs. |
drop_hilit |
SNPs with LOD score within this amount of the maximum SNP association will be highlighted. |
col_hilit |
Color of highlighted points |
col |
Color of other points |
ylim |
y-axis limits |
gap |
Gap between chromosomes. |
minlod |
Minimum LOD to display. (Mostly for GWAS, in which case using 'minlod=1' will greatly increase the plotting speed, since the vast majority of points would be omittted. |
bgcolor |
Background color for the plot. |
altbgcolor |
Background color for alternate chromosomes. |
... |
Additional graphics parameters. |
Value
object of class ggplot
.
Hidden graphics parameters
A number of graphics parameters can be passed via '...'. For example, 'bgcolor' to control the background color and 'altbgcolor' to control the background color on alternate chromosomes. 'cex' for character expansion for the points (default 0.5), 'pch' for the plotting character for the points (default 16), and 'ylim' for y-axis limits.
See Also
Examples
dirpath <- "https://raw.githubusercontent.com/rqtl/qtl2data/master/DOex"
# Read DOex example cross from 'qtl2data'
DOex <- subset(qtl2::read_cross2(file.path(dirpath, "DOex.zip")), chr = "2")
# Download genotype probabilities
tmpfile <- tempfile()
download.file(file.path(dirpath, "DOex_genoprobs_2.rds"), tmpfile, quiet=TRUE)
pr <- readRDS(tmpfile)
unlink(tmpfile)
# Download SNP info for DOex from web and read as RDS.
tmpfile <- tempfile()
download.file(file.path(dirpath, "c2_snpinfo.rds"), tmpfile, quiet=TRUE)
snpinfo <- readRDS(tmpfile)
unlink(tmpfile)
snpinfo <- dplyr::rename(snpinfo, pos = pos_Mbp)
# Convert to SNP probabilities
snpinfo <- qtl2::index_snps(DOex$pmap, snpinfo)
snppr <- qtl2::genoprob_to_snpprob(pr, snpinfo)
# Scan SNPs.
scan_snppr <- qtl2::scan1(snppr, DOex$pheno)
# plot results
ggplot_snpasso(scan_snppr, snpinfo, show_all_snps=FALSE, patterns="all", drop_hilit=1.5)
# can also just type autoplot() if ggplot2 attached
library(ggplot2)
# plot just subset of distinct SNPs
autoplot(scan_snppr, snpinfo, show_all_snps=FALSE, drop_hilit=1.5)
# highlight SDP patterns in SNPs; connect with lines.
autoplot(scan_snppr, snpinfo, patterns="all",drop_hilit=4)
# query function for finding genes in region
gene_dbfile <- system.file("extdata", "mouse_genes_small.sqlite", package="qtl2")
query_genes <- qtl2::create_gene_query_func(gene_dbfile)
genes <- query_genes(2, 97, 98)
# plot SNP association results with gene locations
autoplot(scan_snppr, snpinfo, patterns="hilit", drop_hilit=1.5, genes=genes)