ggplot_pxg {qtl2ggplot} | R Documentation |
Plot phenotype vs genotype
Description
Plot phenotype vs genotype for a single putative QTL and a single phenotype.
Usage
ggplot_pxg(
geno,
pheno,
sort = TRUE,
SEmult = NULL,
pooledSD = TRUE,
jitter = 0.2,
bgcolor = "gray90",
seg_width = 0.4,
seg_lwd = 2,
seg_col = "black",
hlines = NULL,
hlines_col = "white",
hlines_lty = 1,
hlines_lwd = 1,
vlines_col = "gray80",
vlines_lty = 1,
vlines_lwd = 3,
force_labels = TRUE,
alternate_labels = FALSE,
omit_points = FALSE,
...
)
mean_pxg(geno, pheno, dataframe = NULL)
Arguments
geno |
Vector of genotypes, as produced by
|
pheno |
Vector of phenotypes. |
sort |
If TRUE, sort genotypes from largest to smallest. |
SEmult |
If specified, interval estimates of the within-group
averages will be displayed, as |
pooledSD |
If TRUE and |
jitter |
Amount to jitter the points horizontally, if a vector of length > 0, it is taken to be the actual jitter amounts (with values between -0.5 and 0.5). |
bgcolor |
Background color for the plot. |
seg_width |
Width of segments at the estimated within-group averages |
seg_lwd |
Line width used to plot estimated within-group averages |
seg_col |
Line color used to plot estimated within-group averages |
hlines |
Locations of horizontal grid lines. |
hlines_col |
Color of horizontal grid lines |
hlines_lty |
Line type of horizontal grid lines |
hlines_lwd |
Line width of horizontal grid lines |
vlines_col |
Color of vertical grid lines |
vlines_lty |
Line type of vertical grid lines |
vlines_lwd |
Line width of vertical grid lines |
force_labels |
If TRUE, force all genotype labels to be shown. |
alternate_labels |
If TRUE, place genotype labels in two rows |
omit_points |
If TRUE, omit the points, just plotting the averages (and, potentially, the +/- SE intervals). |
... |
Additional graphics parameters, passed to |
dataframe |
Supplied data frame, or constructed from |
Value
object of class ggplot
.
See Also
Examples
# load qtl2 package for data and genoprob calculation
library(qtl2)
# read data
iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2"))
# insert pseudomarkers into map
map <- insert_pseudomarkers(iron$gmap, step=1)
# calculate genotype probabilities
probs <- calc_genoprob(iron, map, error_prob=0.002)
# inferred genotype at a 28.6 cM on chr 16
geno <- maxmarg(probs, map, chr=16, pos=28.6, return_char=TRUE)
# plot phenotype vs genotype
ggplot_pxg(geno, log10(iron$pheno[,1]), ylab=expression(log[10](Liver)))
# include +/- 2 SE intervals
ggplot_pxg(geno, log10(iron$pheno[,1]), ylab=expression(log[10](Liver)),
SEmult=2)
# plot just the means
ggplot_pxg(geno, log10(iron$pheno[,1]), ylab=expression(log[10](Liver)),
omit_points=TRUE)
# plot just the means +/- 2 SEs
ggplot_pxg(geno, log10(iron$pheno[,1]), ylab=expression(log[10](Liver)),
omit_points=TRUE, SEmult=2)