ldsc {qgg} | R Documentation |
LD score regression
Description
The ldsc function is used for LDSC analysis
Usage
ldsc(
Glist = NULL,
ldscores = NULL,
z = NULL,
b = NULL,
seb = NULL,
af = NULL,
stat = NULL,
n = NULL,
intercept = TRUE,
what = "h2",
SE.h2 = FALSE,
SE.rg = FALSE,
blk = 200
)
Arguments
Glist |
list of information about genotype matrix stored on disk |
ldscores |
vector of LD scores (optional as LD scores are stored within Glist) |
z |
matrix of z statistics for n traits |
b |
matrix of marker effects for n traits if z matrix not is given |
seb |
matrix of standard errors of marker effects for n traits if z matrix not is given |
af |
vector of allele frequencies |
stat |
dataframe with marker summary statistics |
n |
vector of sample sizes for the traits (element i corresponds to column vector i in z matrix) |
intercept |
logical if TRUE the LD score regression includes intercept |
what |
either computation of heritability (what="h2") or genetic correlation between traits (what="rg") |
SE.h2 |
logical if TRUE standard errors and significance for the heritability estimates are computed using a block jackknife approach |
SE.rg |
logical if TRUE standard errors and significance for the genetic correlations are computed using a block jackknife approach |
blk |
numeric size of the blocks used in the jackknife estimation of standard error (default = 200) |
Value
Returns a matrix of heritability estimates when what="h2", and if SE.h2=TRUE standard errors (SE) and significance levels (P) are returned. If what="rg" an n-by-n matrix of correlations is returned where the diagonal elements being h2 estimates. If SE.rg=TRUE a list is returned with n-by-n matrices of genetic correlations, estimated standard errors and significance levels.
Author(s)
Peter Soerensen
Palle Duun Rohde
Examples
# Plink bed/bim/fam files
#bedfiles <- system.file("extdata", paste0("sample_chr",1:2,".bed"), package = "qgg")
#bimfiles <- system.file("extdata", paste0("sample_chr",1:2,".bim"), package = "qgg")
#famfiles <- system.file("extdata", paste0("sample_chr",1:2,".fam"), package = "qgg")
#
## Summarize bed/bim/fam files
#Glist <- gprep(study="Example", bedfiles=bedfiles, bimfiles=bimfiles, famfiles=famfiles)
#
## Filter rsids based on MAF, missingness, HWE
#rsids <- gfilter(Glist = Glist, excludeMAF=0.05, excludeMISS=0.05, excludeHWE=1e-12)
#
## Compute sparse LD (msize=size of LD window)
##ldfiles <- system.file("extdata", paste0("sample_chr",1:2,".ld"), package = "qgg")
##Glist <- gprep(Glist, task="sparseld", msize=200, rsids=rsids, ldfiles=ldfiles, overwrite=TRUE)
#
#
##Simulate data
#W1 <- getG(Glist, chr=1, scale=TRUE)
#W2 <- getG(Glist, chr=2, scale=TRUE)
#W <- cbind(W1,W2)
#causal <- sample(1:ncol(W),5)
#b1 <- rnorm(length(causal))
#b2 <- rnorm(length(causal))
#y1 <- W[, causal]%*%b1 + rnorm(nrow(W))
#y2 <- W[, causal]%*%b2 + rnorm(nrow(W))
#data1 <- data.frame(y = y1, mu = 1)
#data2 <- data.frame(y = y2, mu = 1)
#X1 <- model.matrix(y ~ 0 + mu, data = data1)
#X2 <- model.matrix(y ~ 0 + mu, data = data2)
## Linear model analyses and single marker association test
#maLM1 <- lma(y=y1, X=X1,W = W)
#maLM2 <- lma(y=y2,X=X2,W = W)
#
## Compute heritability and genetic correlations for trait 1 and 2
#z1 <- maLM1[,"stat"]
#z2 <- maLM2[,"stat"]
#z <- cbind(z1=z1,z2=z2)
#h2 <- ldsc(Glist, z=z, n=c(500,500), what="h2")
#rg <- ldsc(Glist, z=z, n=c(500,500), what="rg")