qch.fit {qch} | R Documentation |
Infer posterior probabilities of H_0
/H_1
configurations.
Description
For each item, estimate the posterior probability for each configuration.
This function use either the model accounting for the dependence structure
through a Gaussian copula function (copula=="gaussian"
) or
assuming the conditional independence (copula=="indep"
).
Utilizes parallel computing, when available. For package documentation, see qch-package
.
Usage
qch.fit(
pValMat,
EffectMat = NULL,
Hconfig,
copula = "indep",
threads_nb = 0,
plotting = FALSE,
Precision = 1e-06
)
Arguments
pValMat |
A matrix of p-values, each column corresponding to a p-value serie. |
EffectMat |
A matrix of estimated effects corresponding to the p-values contained in pValMat. If specified, the procedure will account for the direction of the effect. (optional, default is |
Hconfig |
A list of all possible combination of |
copula |
A string specifying the form of copula to use. Possible values are " |
threads_nb |
The number of threads to use. The number of thread will set to the number of core available by default. |
plotting |
A boolean. Should some diagnostic graphs be plotted ? Default is |
Precision |
The precision for EM algorithm to infer the parameters. Default is |
Value
A list with the following elements:
prior | vector of estimated prior probabilities for each of the H-configurations. |
Rcopula | the estimated correlation matrix of the Gaussian copula. (if applicable) |
Hconfig | the list of all configurations. |
If the storage permits, the list will additionally contain:
posterior
matrix providing for each item (in row) its posterior probability to belong to each of the H-configurations (in columns). fHconfig
matrix containing \psi_c
densities evaluated at each items, each column corresponding to a configuration.Else, the list will additionally contain:
f0Mat
matrix containing the evaluation of the marginal densities under H_0
at each items, each column corresponding to a p-value serie.f1Mat
matrix containing the evaluation of the marginal densities under H_1
at each items, each column corresponding to a p-value serie.F0Mat
matrix containing the evaluation of the marginal cdf under H_0
at each items, each column corresponding to a p-value serie.F1Mat
matrix containing the evaluation of the marginal cdf under H_1
at each items, each column corresponding to a p-value serie.fHconfig_sum
vector containing (\sum_cw_c\psi_c(Z_i))
for each itemsi
.
The elements of interest are the posterior probabilities matrix, posterior
,
the estimated proportion of observations belonging to each configuration, prior
, and
the estimated correlation matrix of the Gaussian copula, Rcopula
.
The remaining elements are returned primarily for use by other functions.
Examples
data(PvalSets_cor)
PvalMat <- as.matrix(PvalSets_cor[,-3])
## Build the Hconfig objects
Q <- 2
Hconfig <- GetHconfig(Q)
## Run the function
res.fit <- qch.fit(pValMat = PvalMat,Hconfig = Hconfig,copula="gaussian")
## Display the prior of each class of items
res.fit$prior
## Display the correlation estimate of the gaussian copula
res.fit$Rcopula
## Display the first posteriors
head(res.fit$posterior)