ranef {ptmixed} | R Documentation |
Compute random effects for Poisson-Tweedie and negative binomial mixed model
Description
Compute the BLUP (best linear unbiased predictor) of the random
effects for the Poisson-Tweedie and negative binomial generalized
linear mixed models (fitted through ptmixed
and
nbmixed
respectively)
Usage
ranef(obj)
Arguments
obj |
an object of class |
Value
A vector with the EB estimates of the random effects
Author(s)
Mirko Signorelli
References
Signorelli, M., Spitali, P., Tsonaka, R. (2021). Poisson-Tweedie mixed-effects model: a flexible approach for the analysis of longitudinal RNA-seq data. Statistical Modelling, 21 (6), 520-545. URL: https://doi.org/10.1177/1471082X20936017
See Also
Examples
data(df1, package = 'ptmixed')
# estimate a Poisson-Tweedie or negative binomial GLMM (using
# ptmixed() or nbmixed())
fit0 = nbmixed(fixef.formula = y ~ group + time, id = id,
offset = offset, data = df1, npoints = 5,
freq.updates = 200, hessian = FALSE, trace = TRUE)
# obtain random effect estimates
ranef(obj = fit0)
[Package ptmixed version 1.1.3 Index]