reliability_summary {psycModel} | R Documentation |
Reliability Analysis
Description
First, it will determine whether the data is uni-dimensional or multi-dimensional using parameters::n_factors()
. If the data is uni-dimensional, then it will print a summary
consists of alpha, G6, single-factor CFA, and descriptive statistics result. If it is multi-dimensional, it will print a summary consist of alpha, G6, omega result. You can
bypass this by specifying the dimensionality argument.
Usage
reliability_summary(
data,
cols,
dimensionality = NULL,
digits = 3,
descriptive_table = TRUE,
quite = FALSE,
streamline = FALSE,
return_result = FALSE
)
Arguments
data |
|
cols |
items for reliability analysis. Support |
dimensionality |
Specify the dimensionality. Either |
digits |
number of digits to round to |
descriptive_table |
Get descriptive statistics. Default is |
quite |
suppress printing output |
streamline |
print streamlined output |
return_result |
If it is set to |
Value
a psych::alpha
object for unidimensional scale, and a psych::omega
object for multidimensional scale.
Examples
fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x3)
fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x9)