lm_model {psycModel} | R Documentation |
Linear Regressions / ANOVA / ANCOVA
Description
Fit a linear regression using lm()
. Linear regression is used to explore the effect of continuous variables / categorical variables in predicting a normally-distributed continuous variables.
Usage
lm_model(
data,
response_variable,
predictor_variable,
two_way_interaction_factor = NULL,
three_way_interaction_factor = NULL,
quite = FALSE
)
Arguments
data |
|
response_variable |
response variable. Support |
predictor_variable |
predictor variable. Support |
two_way_interaction_factor |
two-way interaction factors. You need to pass 2+ factor. Support |
three_way_interaction_factor |
three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support |
quite |
suppress printing output |
Value
an object class of lm
representing the linear regression fit
Examples
fit <- lm_model(
data = iris,
response_variable = Sepal.Length,
predictor_variable = dplyr::everything(),
two_way_interaction_factor = c(Sepal.Width, Species)
)