efa_summary {psycModel} | R Documentation |
Exploratory Factor Analysis
Description
The function is used to fit a exploratory factor analysis model. It will first find the optimal number of factors using parameters::n_factors. Once the optimal number of factor is determined, the function will fit the model using
psych::fa()
. Optionally, you can request a post-hoc CFA model based on the EFA model which gives you more fit indexes (e.g., CFI, RMSEA, TLI)
Usage
efa_summary(
data,
cols,
rotation = "varimax",
optimal_factor_method = FALSE,
efa_plot = TRUE,
digits = 3,
n_factor = NULL,
post_hoc_cfa = FALSE,
quite = FALSE,
streamline = FALSE,
return_result = FALSE
)
Arguments
data |
|
cols |
columns. Support |
rotation |
the rotation to use in estimation. Default is 'oblimin'. Options are 'none', 'varimax', 'quartimax', 'promax', 'oblimin', or 'simplimax' |
optimal_factor_method |
Show a summary of the number of factors by optimization method (e.g., BIC, VSS complexity, Velicer's MAP) |
efa_plot |
show explained variance by number of factor plot. default is |
digits |
number of digits to round to |
n_factor |
number of factors for EFA. It will bypass the initial optimization algorithm, and fit the EFA model using this specified number of factor |
post_hoc_cfa |
a CFA model based on the extracted factor |
quite |
suppress printing output |
streamline |
print streamlined output |
return_result |
If it is set to |
Value
a fa
object from psych
Examples
efa_summary(lavaan::HolzingerSwineford1939, starts_with("x"), post_hoc_cfa = TRUE)