provenance-package | Menu-based interface for 'provenance' |
ALR | Additive logratio transformation |
ALR.compositional | Additive logratio transformation |
ALR.default | Additive logratio transformation |
amalgamate | Group components of a composition |
amalgamate.compositional | Group components of a composition |
amalgamate.counts | Group components of a composition |
amalgamate.default | Group components of a composition |
amalgamate.SRDcorrected | Group components of a composition |
amalgamate.varietal | Group components of a composition |
as.acomp | create an 'acomp' object |
as.compositional | create a 'compositional' object |
as.counts | create a 'counts' object |
as.data.frame | create a 'data.frame' object |
as.data.frame.compositional | create a 'data.frame' object |
as.data.frame.counts | create a 'data.frame' object |
as.varietal | create a 'varietal' object |
botev | Compute the optimal kernel bandwidth |
bray.diss | Bray-Curtis dissimilarity |
bray.diss.compositional | Bray-Curtis dissimilarity |
bray.diss.default | Bray-Curtis dissimilarity |
CA | Correspondence Analysis |
central.counts | Calculate central compositions |
CLR | Centred logratio transformation |
CLR.compositional | Centred logratio transformation |
CLR.default | Centred logratio transformation |
combine | Combine samples of distributional data |
densities | A list of rock and mineral densities |
diss.compositional | Calculate the dissimilarity matrix between two datasets of class 'distributional', 'compositional', 'counts' or 'varietal' |
diss.counts | Calculate the dissimilarity matrix between two datasets of class 'distributional', 'compositional', 'counts' or 'varietal' |
diss.distributional | Calculate the dissimilarity matrix between two datasets of class 'distributional', 'compositional', 'counts' or 'varietal' |
diss.varietal | Calculate the dissimilarity matrix between two datasets of class 'distributional', 'compositional', 'counts' or 'varietal' |
endmembers | Petrographic end-member compositions |
get.f | Calculate the largest fraction that is likely to be missed |
get.n | Calculate the number of grains required to achieve a desired level of sampling resolution |
get.p | Calculate the probability of missing a given population fraction |
GPA | Generalised Procrustes Analysis of configurations |
indscal | Individual Differences Scaling of provenance data |
KDE | Create a kernel density estimate |
KDEs | Generate an object of class 'KDEs' |
KS.diss | Kolmogorov-Smirnov dissimilarity |
KS.diss.default | Kolmogorov-Smirnov dissimilarity |
KS.diss.distributional | Kolmogorov-Smirnov dissimilarity |
Kuiper.diss | Kuiper dissimilarity |
Kuiper.diss.default | Kuiper dissimilarity |
Kuiper.diss.distributional | Kuiper dissimilarity |
lines | Ternary point plotting |
lines.ternary | Ternary line plotting |
MDS | Multidimensional Scaling |
MDS.compositional | Multidimensional Scaling |
MDS.counts | Multidimensional Scaling |
MDS.default | Multidimensional Scaling |
MDS.distributional | Multidimensional Scaling |
MDS.varietal | Multidimensional Scaling |
minsorting | Assess settling equivalence of detrital components |
Namib | An example dataset |
PCA | Principal Component Analysis |
plot.CA | Point-counting biplot |
plot.compositional | Plot a pie chart |
plot.distributional | Plot continuous data as histograms or cumulative age distributions |
plot.GPA | Plot a Procrustes configuration |
plot.INDSCAL | Plot an INDSCAL group configuration and source weights |
plot.KDE | Plot a kernel density estimate |
plot.KDEs | Plot one or more kernel density estimates |
plot.MDS | Plot an MDS configuration |
plot.minsorting | Plot inferred grain size distributions |
plot.PCA | Compositional biplot |
plot.ternary | Plot a ternary diagram |
points.ternary | Ternary point plotting |
procrustes | Generalised Procrustes Analysis of provenance data |
provenance | Menu-based interface for 'provenance' |
radialplot.counts | Visualise point-counting data on a radial plot |
read.compositional | Read a .csv file with compositional data |
read.counts | Read a .csv file with point-counting data |
read.densities | Read a .csv file with mineral and rock densities |
read.distributional | Read a .csv file with distributional data |
read.varietal | Read a .csv file with varietal data |
restore | Undo the effect of hydraulic sorting |
SH.diss | Sircombe and Hazelton distance |
SNSM | varietal data example |
subset | Get a subset of provenance data |
subset.compositional | Get a subset of provenance data |
subset.counts | Get a subset of provenance data |
subset.distributional | Get a subset of provenance data |
subset.varietal | Get a subset of provenance data |
summaryplot | Joint plot of several provenance datasets |
ternary | Define a ternary composition |
ternary.ellipse | Ternary confidence ellipse |
ternary.ellipse.compositional | Ternary confidence ellipse |
ternary.ellipse.counts | Ternary confidence ellipse |
ternary.ellipse.default | Ternary confidence ellipse |
text | Ternary point plotting |
text.ternary | Ternary text plotting |
varietal2distributional | Convert varietal to distributional data |
Wasserstein.diss | Wasserstein distance |
Wasserstein.diss.default | Wasserstein distance |
Wasserstein.diss.distributional | Wasserstein distance |
Wasserstein.diss.varietal | Wasserstein distance |