extractMoreauBroto {protr} | R Documentation |
Normalized Moreau-Broto Autocorrelation Descriptor
Description
This function calculates the normalized Moreau-Broto
autocorrelation descriptor (dim: length(props) * nlag
).
Usage
extractMoreauBroto(
x,
props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101",
"BIGC670101", "CHAM810101", "DAYM780201"),
nlag = 30L,
customprops = NULL
)
Arguments
x |
A character vector, as the input protein sequence. |
props |
A character vector, specifying the Accession Number of the target properties. 8 properties are used by default, as listed below:
|
nlag |
Maximum value of the lag parameter. Default is |
customprops |
A |
Value
A length length(props) * nlag
named vector.
Note
For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors provided, instead of using this function with their data blindly. It would be wise to use some negative and positive control comparisons where relevant to help guide interpretation of the results.
Author(s)
Nan Xiao <https://nanx.me>
References
AAindex: Amino acid index database. https://www.genome.jp/dbget/aaindex.html
Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic index of amino acids. Journal of Protein Chemistry, 19, 269-275.
Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers, 27, 451-477.
Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrelation: an usage from an Amerindian tribal population. American Journal of Physical Anthropology, 129, 121-131.
See Also
See extractMoran
and extractGeary
for Moran autocorrelation descriptors and Geary autocorrelation descriptors.
Examples
x <- readFASTA(system.file("protseq/P00750.fasta", package = "protr"))[[1]]
extractMoreauBroto(x)
myprops <- data.frame(
AccNo = c("MyProp1", "MyProp2", "MyProp3"),
A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
N = c(-0.78, 0.2, 58), D = c(-0.9, 3, 59),
C = c(0.29, -1, 47), E = c(-0.74, 3, 73),
Q = c(-0.85, 0.2, 72), G = c(0.48, 0, 1),
H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
L = c(1.06, -1.8, 57), K = c(-1.5, 3, 73),
M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
P = c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43)
)
# Use 4 properties in the AAindex database, and 3 cutomized properties
extractMoreauBroto(
x,
customprops = myprops,
props = c(
"CIDH920105", "BHAR880101",
"CHAM820101", "CHAM820102",
"MyProp1", "MyProp2", "MyProp3"
)
)