normalize_data {promor} | R Documentation |
Normalize intensity data
Description
This function normalizes data using a user-specified normalization method.
Usage
normalize_data(df, method = "quantile")
Arguments
df |
An |
method |
Name of the normalization method to use. Choices are
|
Details
normalize_data
is a wrapper function around thenormalizeBetweenArrays
function from thelimma
package.This function normalizes intensity values to achieve consistency among samples.
It assumes that the intensities in the data frame have been log-transformed, therefore, it is important to make sure that
create_df
was run withlog_tr = TRUE
(default) when creating theraw_df
object.
Value
A norm_df
object, which is a data frame of
normalized protein intensities.
Author(s)
Chathurani Ranathunge
See Also
-
create_df
-
impute_na
See
normalizeBetweenArrays
in the R packagelimma
for more information on the different normalization methods available.
Examples
## Generate a raw_df object with default settings. No technical replicates.
raw_df <- create_df(
prot_groups = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/pg1.txt",
exp_design = "https://raw.githubusercontent.com/caranathunge/promor_example_data/main/ed1.txt"
)
## Impute missing values in the data frame using the default minProb
## method prioir to normalization.
imp_df <- impute_na(raw_df)
## Normalize the imp_df object using the default quantile method
norm_df1 <- normalize_data(imp_df)
## Use the cyclicloess method
norm_df2 <- normalize_data(imp_df, method = "cyclicloess")
## Normalize data in the raw_df object prior to imputation.
norm_df3 <- normalize_data(raw_df)